

NESSHY

"Novel Efficient Solid Storage for Hydrogen"

IP SES6-CT-2006-518271

HySIC

Enhancing International Cooperation in running FP6
Hydrogen Solid Storage activities

SES6 038941

Thanos Stubos

National Center for Scientific Research «Demokritos»
Athens - Greece

General facts

- Co-ordinator: NCSR Demokritos (EL)
- Duration:1.1.2006 –31.12.2010 (5 years)
- → Budget: M€11.3
- → EC contr.: M€7.5
- → 22 partners from 12 European countries and USA (1 OEM, 19 research institutes, 2 industrial companies)

- → Vehicles are being designed by OEMs that can achieve > 300 miles
 - 350 or 700 bar
 - 1 to 4 tanks
 - Specified range from
 ~200 to > 350 miles
- But performance, space on-board and cost are still challenges for mass market penetration...
- → Is there a low pressure alternative?

Current Status No Technology meets targets

DOE: G. Thomas (2007), G. Sandrock (2008)

Present Status of H-Solid Storage Technology

- Hydrogen solid storage:
 - Importance of breakthroughs
 - Continuation of funding NECESSARY as also clearly acknowledged at DoE Review Meeting (June '08)

NESSHY <u>aims at</u> advancing the current state of hydrogen storage in solid materials, with respect to

- ✓ novel materials
- ✓ enhanced understanding of the physical mechanisms involved
 - ✓ novel analytical and characterisation tools and measurement techniques
 - ✓ standardisation, testing protocols (virtual laboratory)
 - ✓ advanced numerical methods for optimal material & storage design
 - ✓ upscaling the production processes of promising materials
 - ✓ design and testing of storage tank systems

NESSHY Highlights - Materials

✓ Novel synthesis of magnesium tetrahydroborate, Mg(BH₄)₂ → potential for H₂ storage (14.9 mass % H & suitable thermodynamic properties)

J. Mater. Chem., 17 (2007) 3496-3503

- ✓ Mixed alanates → patent applications:
 - Detailed studies of a wide range of systems
- Changed thermodynamics (reduction of reaction enthalpy towards relatively fast reversible H₂ storage) by substitution of hydrogen atoms with fluorine in NaAlH₄

Na₃AID_{6-x}F_x

IFE patent appl. (2006); Brinks, Fossdal, Hauback (in press)

✓ Nanoporous structures → Metal-doped carbons:

- Synthesis of novel carbogenic foam with high surface spin concentration
- Synthesis of Pd/C foam nanocomposites to exploit the "spillover effect" →
 H₂ uptake: > 2 wt % at 298 K
- Synthesis of Pd-alloy/C foam nanocomposites → Enhanced H₂ uptake (> 4 wt%) at 298 K (verified also by JRC and SwRI)

✓ Metal-doped carbons (simulation):

• theoretical studies of Li-intercalated nanoscrolls \rightarrow GCMC calculations predict H $_2$ uptake \sim 4 wt % at 293 K

Viculis et al., Science, 299 (2003), 1361

✓ Hydrogen clathrates:

- Simulations suggest that H₂-THF sII clathrates cannot store more than 1.1 wt% H₂ at pressures up to 1200 bar and close-to-ambient temperatures
- For the first time, H₂ hydrates with the sH structure have been synthesized (TUD).
 Estimated H₂ storage capacity → 1.4%
- Simulations (NCSRD), suggest that if a promoter can stabilize the "medium" cavity, up to 7 H₂ molecules can be stored in the "large" cavity → H₂ content up to 4 wt%

✓MOFs:

Low temperature (from 20 K) thermal desorption spectroscopy measurements revealed adsorption sites → strongest adsorption in small pores

Picture from Krawiec et al. Adv. Eng. Mater. 8 (2006) 293

Picture kindly provided by J. Rowsell

Max-Planck-Institut für Metallforschung

NESSHY Highlights – Upscaling & Storage systems

✓Tanks:

- Large scale production of Mg based hydrides and development of storage tanks (2 kg of material available)
 - 10 kg MgH₂ tank under development

Equal-channel angular processing (ECAP)

Industrial scale Milling

2 kg MgH₂ tank, ≈ 5 kWh (120 gr - 1344 NL H₂)

External volume : 3 l Weight ≈ 12 kg Max Pressure: 1.5 MPa

NESSHY Highlights – Upscaling & Storage systems

√Tanks:

Development of a lab-scale (500 ml) complex hydride (NaAlH₄) tank → testing in progress

• Large scale (0.4 kg H₂) NaAlH₄ tank under development

✓ Organisation of the first Round Robin Tests in Europe:

- Physisorption @ 77K (commercial Carbon Molecular Sieve) Completed
- Complex hydride (already started) & Mg-based materials (starting soon)
- In collaboration with SwRI/DoE and external (EU & non EU) organisations
 - Analysis in progress

NESSHY Training & Dissemination activities

- → www.nesshy.net
- → NESSHY Newsletter
- →IPHE recognition (September 2006)
- → Training and dissemination events with wide multi-national participation have been supported up to now by NESSHY
 - Hydrogen Summer School, University of Iceland Reykjavik (2006, 2008)
 - One day Magnesium Titanium Hydride workshop, Vrije Universiteit -Amsterdam (August 2006)
- → Interaction with other hydrogen related projects funded by EC (HYTRAIN, COSY, HYDROGEN RTNs, SURMOF, MOFCAT, HYCONES, NANOHY)
- → More than 190 papers in journals/conferences in the first 2 years of the project
- → 8 patent applications

Enhancing Cooperation Collaboration with other FP6 & FP7 projects

	Project	Coordinator	Topic
Energy Priority	STORHY www.storhy.net 2004-2008	Magna Steyr <i>Austria</i>	Next generation H ₂ storage technologies (compressed gas, cryogenic liquid and solid materials*) with a focus on automotive applications * Na-alanate, mixed alanates, alane
	NANOHY www.nanohy.eu 2008-2011	Forschungszentrum Karlsruhe <i>Germany</i>	Nanocomposites consisting of hydride particle sizes in the lower nm range protected by a nanocarbon template or by self-assembled polymer layers in order to prevent agglomeration
NMP Priority	HYCONES www.hycones.eu 2006-2009	NCSR Demokritos Greece	Hydrogen storage in carbon cones
	SURMOF www.rhur-uni- bochum.de/pc1/SURMOF 2006-2009	Rhur University <i>Austria</i>	Anchoring of MOFs to surfaces
	MOFCAT www.sintef.no 2006-2011	SINTEF Norway	Functional MOFs as heterogeneous catalysts and adsorbents
Marie Curie Research Training Networks (RTN)	HYTRAIN www.hytrain.net 2005-2008	University of Salford <i>UK</i>	Mg-base hydrides, complex hydrides (e.g. alanates, borohydrides), novel light hydrides (e.g. Li nitrides, amides)
	COSY www.cosy-net.eu 2006-2009	GKSS Germany	Fundamental understanding of the sorption kinetics in reactive hydride composites
	HYDROGEN www.theorchem.leidenuniv.nl 2006-2009	Leiden University The Netherlands	Hydrogen storage in alanates, borohydrides and a new class of materials to store it in form of ammonia

Enhancing Cooperation International Collaborations

- → IPHE label (September 2006)
- → Participation of SwRI, the American institute officially appointed by DoE for standardisation in H₂ solid storage measurements
- → HySIC: <u>"Enhancing International</u>

 <u>Cooperation in running FP6 Hydrogen</u>

 <u>Solid Storage Activities"</u> Specific Support

 Action linked to NESSHy (2007-2008)
 - 8 partners from EU, Russian Federation, P.
 R. China and Lithuania
 - Key Objectives:
 - Performance of studies enhancing international cooperation (sample preparation and characterisation, benchmarking, round-robin testing, testing protocol standardization)
 - Joint dissemination actions (workshops and integration activities)

→ Duration: 1.1.2007 – 31.12.2008 (2-years)

→ Official project Start: January 1, 2007

→ Budget: 310,850 €

→ EU Contribution: 300,000 €

Website: http://milos.ipta.demokritos.gr/hysic

HySIC Consortium

Organization	Country
National Centre for Scientific Research "Demokritos" (NCSRD)	Greece
Stockholms Universitet (SU)	Sweden
University of Salford (USAL)	UK
Institutt for Energiteknikk (IFE)	Norway
Lithuania Energy Institute (LEI)	Lithuania
Institute of New Energy Material Chemistry of Nankai University (INEMC)	P.R. China
Institute of Solid State Physics of the Russian Academy of Sciences (ISSP-RAS)	Russian Federation
General Research Institute For Non-ferrous Metals (GRINM)	P.R. China

✓2 Supporting activities:

- Performance of Studies Enhancing International Cooperation:
 - Sample preparation and exchange among HySIC partners for round-robin testing that involves structural, thermodynamic and kinetic characterization using various methods including microgravimetric techniques, electrochemical measurements and neutron scattering.
 - Evaluation of results with a view to sample and testing protocol standardization.
- Joint Dissemination Actions and Integration of HySIC/NESSHY Activities

- Staff exchanges (GRINM/USAL/IFE; LEI/SU/ISSP-RAS)
 for training and R&D
- Sample synthesis and exchanges (all partners)
- Participation to NESSHY Round Robin Tests
- Potential joint publications
- → Joint experimental campaigns : (USAL/Nankai: Neutron Scattering on Mg-nanowires)
- → Joint HySIC-NESSHY dissemination actions in China:

Workshop Sept., 08:

- Wide participation of Chinese groups working on H-storage
- Visits to GRINM, LN-Power Sources Co.
- Opportunities for further collaboration

Benefits of being an "IPHE-labeled" project

→ The <u>label</u> as such offers a certain potential but IS NOT sufficient to establish long lasting collaborations.

→ More concrete actions need to be taken.

Our experience suggests that focused Specific Support Actions, even with small budget like *HySIC*, may promote efficiently the IPHE aims at International level.

