

HERC

(Hydrogen Energy R&D Center)

www.h2.re.kr

• Role

- Planning and managing the National Hydrogen production and Program supported by MOST
- * 21st Century Frontier Program

• R&D Period

01 Oct. 2003 ~ 31 March 2013 (9.5 years for 3 phases)

OR&D Fund

Total 111billion KRW (1000KRW=1 US dollars) (Government: 95 billion KRW, Industry: 16 billion KRW)

• Sponsoring Ministry

Ministry of Science & Technology, Republic of Korea

Source: www.h2.re.kr

R&D Activities in the Phase II (HERC)(2006-2009)

Hydrogen Production

- ► NG steam reforming for hydrogen station
- **▶** Biological hydrogen production
- **▶** Thermo-chemical hydrogen production
- ► Photocatalytic and photochemical hydrogen production (BR/AR/DE)
- ► Water electrolysis using PEM and THE

Action type

- (AR/DE) (Mid)
- (BR/AR/DE) (Long)
- (BR/AR/DE) (Long)
 - RAR/DE) (Long)
- (BR/AR/DE) (Long)

Hydrogen Storage

► Hydrogen storage using metal hydrides

- (BR/AR/DE) (Long)
- ► Hydrogen storage using nano-structured materials
- (BR/AR/DE) (Long)

► Hydrogen storage using chemical hydrides

- (BR/AR/DE)
- (Long)

Hydrogen Utilization

► Hydrogen sensor

- ► Linear power/generation system of hydrogen combustion (AR/DE)
 - (AR/DE)
- (Long) (Long)

- **Supporting Project**
 - ► Measurement techniques for hydrogen storage materials
 - **▶** Policy and technology assessment

BR: basic research, AR: applied research, DE: demonstration

P1. Compact NG steam reforming system for H₂-fueling station

R&D Objectives

- Integrated design & development of on-site hydrogen production unit by steam reforming of methane
- Capacity: 20m³/hr, Total production efficiency: 60%(LHV basis)

❖Content of R&D Activities

Hydrogen refueling station in KIER

Project Manager: Dr. Yoon, Wang-Lai wlyoon@kier.re.kr

- Location: KIER, Daejeon (Onsite SMR)
- Operation Pressure: 350 bar
- ♦ Storage Capacity: 170m³
- Production Rate: 20 m³/hr
- Open on August 25th, 2006

P2. Biological Hydrogen Production

R & D Objectives

-Scale-up and optimization of fermentative \mathbf{H}_2 production process and development of bio-mimetic \mathbf{H}_2 production system

Fermentative bioreactor scale : > 500 L

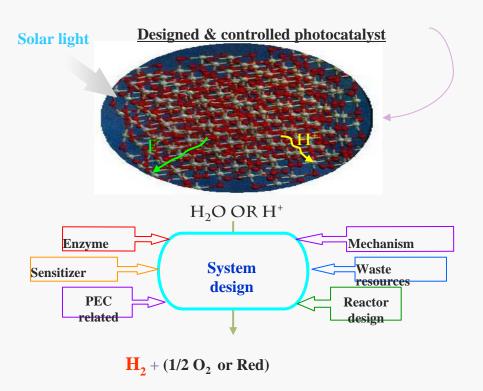
Fermentative H₂ productivity: 15 Nm³ H₂/day/m³

H₂ productivity by bio-mimetic system : 40 L H₂/kg protein/hr

* Recent publications: Int.J.Hydrogen Energy,31(2006)812-816 Int.J.Hydrogen Energy,31(2006)121-127 Korea Patent 2005-0032480

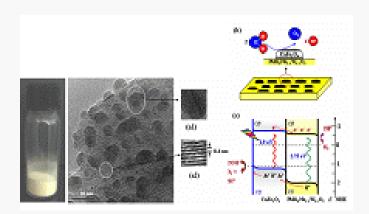
Project Manager: Dr. Kim, Mi-Sun, bmmskim@kier.re.kr

Bioreactors for photosynthetic and fermentative H₂ production



P3. Photocatalytic and Photoelectrochemical Hydrogen Production Technology

R&D Objectives

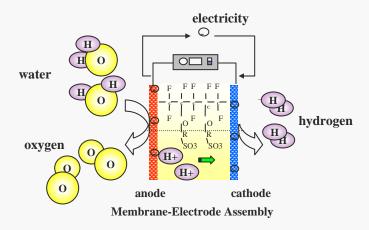

- Development of the system for 3% solar light conversion efficiency (@AM 1.5) utilizing solar light-sensitizing photocatalyst
- System establishment for PEC cell of 7% efficiency

Content of R&D Activities

- Highly active water splitting photocatalysts- material design
- Tandem-type photoelectrochemical cell modules
- PEC cell of 7% efficiency
- Photo/Biocatalyst
- Q-sized photocatalysts and mesoporous media
- Layered Perovskite and Composite Photocatalysts

KRICT, KIER, KIST, POSTECH, Nanopac

If any question, contact: Dr. Moon,Sang-Jin moonsj@krict.re.kr



P4. Hydrogen production by electrolysis

❖ Contents of R&D Activities

- PEM electrolysis

- High temperature electrolysis (HTE)

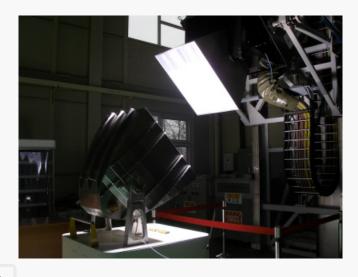
Anode =
$$O^2 \rightarrow 1/2O_2 + 2e^2$$

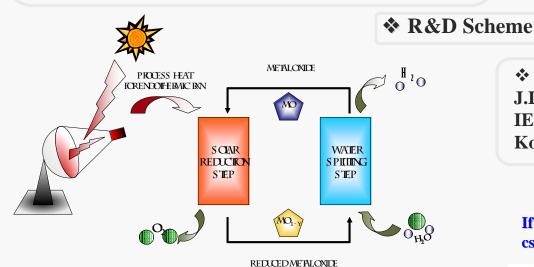
Cathode = $H_2O + 2e^- \rightarrow H_2 + O^2$

***** R&D Objectives

- Demonstration of 3Nm³/h class PEME(Polymer Electrolyte Membrane Electrolysis) system
- Development of 50 L/h class HTSE(High Temperature Steam Electrolysis) stack
 - * Recent Publications:
 Journal of Power Source, 149(2005)84-89
 Korea Patent 2005-16642

For more information, see: http://www.elchemtech.com/

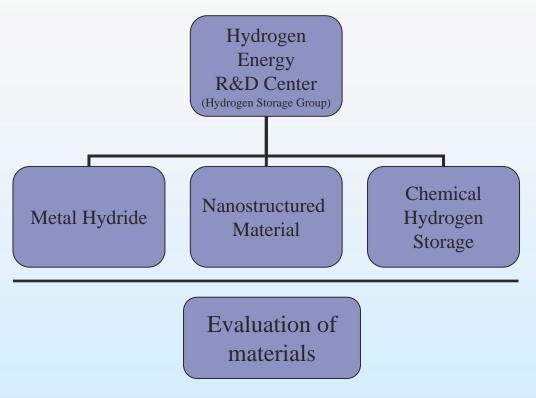



P5. Hydrogen Production by Thermochemical Water-Splitting

R&D Objectives

- Development of 2-step thermochemical hydrogen production system
- ➤ Demonstrate lab. scale two-step thermochemical water splitting by the solar simulator system
- ➤ Optimize the properties of the media
- >Improve the thermal stability of media and kinetics of water splitting reaction

300kW solar simulator and concentrator


* Recent Publications: J.Ind.Eng.Chem., 10(6), 2004 IEEE transactions on Magnetics, 41(2005) Korea Patent 0526052

If any question, contact: Dr. Chu-Sik Park, cspark@kier.re.kr

Strategy: Diverse Portfolio with Materials Focus

- Systematic approach
 - ✓ Theory and experiment
 - ✓ Independent analysis
- Universities, companies, Gov-led research institute
- Flexibility Annual solicitation
- •Close coordination with basic science and other agencies

S1. Chemical Hydrogen Storage

R&D Objectives

- Development of a highly efficient hydrogen storage and generation system using NaBH4 and other chemicals

Research outputs

Development of high performance ceramic catalyst for NaBH₄ hydrolysis ..


Development of hydrogen reactor operated at room temperature and atmospheric pressure.

Development of coating technology of the ceramic catalyst

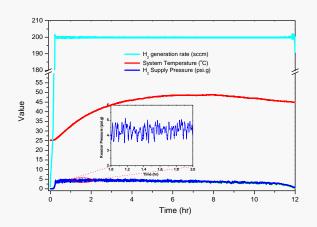
Content of R&D Activities

H ₂ Storage Technology	H ₂ Release System for Mobile Uses		
• NaBH ₄ /NaBO ₂ Recycling Technologies • Reactor Development	· H ₂ Release System · Catalyst Development		
Samsung Engineering, KIST, University			

Co-B catalyst coated on Ni foam

Porous Co-P catalyst

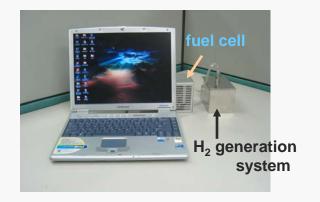
If any question, contact: Dr. Yu, Yong-Ho yongho.yu@samsung.com


Characteristics of the hydrogen generation system

- Bellows type batch reactor
- Self-regulating system by pressure control
- Constant supply of Hydrogen
- System without a pump
- Operation at room temperature and atmospheric pressure

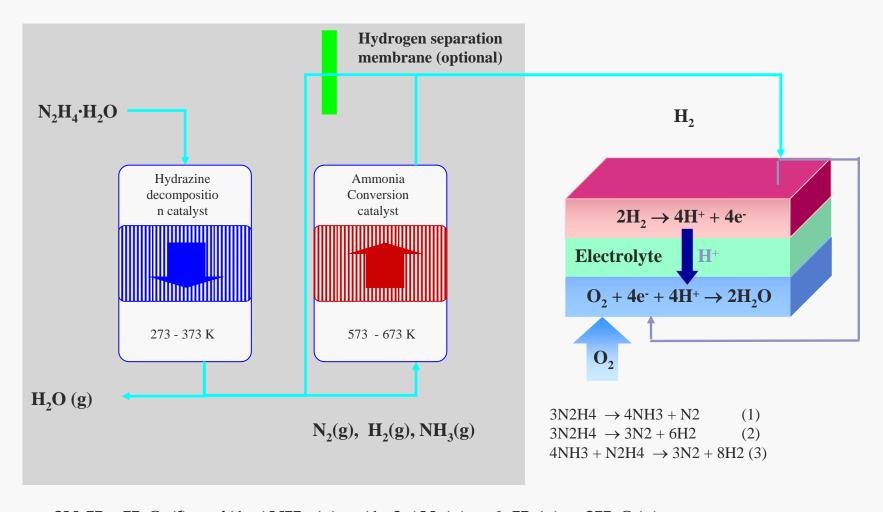
Patent pending			
domestic	foreign		
7	3		

Demonstration of the system operations


Energy density of the system : 50 kg/m³

- Setting up the fuel cell operation tester with a hydrogen generation system
- Development of modular hydrogen generation system for 100W and 1KW
 - Fuel cell scooter operated by a H₂ generation system using NaBH₄

- @ 300W fuel cell system
- @ The scooter can run up to 140 kilometers on 6 liters of hydrogen fuel


Fuel cell notebook operated by a H₂ generation system using NaBH₄

- @ 20W fuel cell system
- @ Ceramic catalyst was used

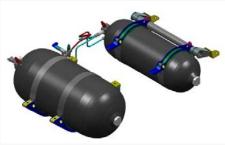
Hydrazine hydrate decomposition system

 $3N_2H_4 \cdot H_2O(l) \rightarrow 4(1-x)NH_3(g) + (1+2x)N_2(g) + 6xH_2(g) + 3H_2O(g)$

S2. Metal Hydride Hydrogen Storage

R&D Objectives

- Develop metal hydride hydrogen storage materials and storage system for fuel cell vehicle (FCV)

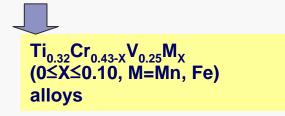

❖Content of R&D Activities

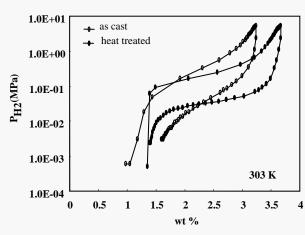
Basic research of metal hydride hydrogen storage systems for a fuel cell vehicle

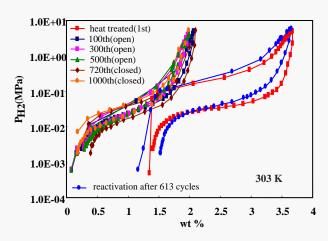
- High-performance hydrogen storage material using metal hydrides, with design technology for hydrogen storage vessels thereof
- Preparation of alkali-metal complex hydrides for hydrogen storage

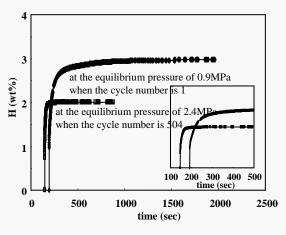
Hydrogen storage material

High pressure hydrogen gas tank system

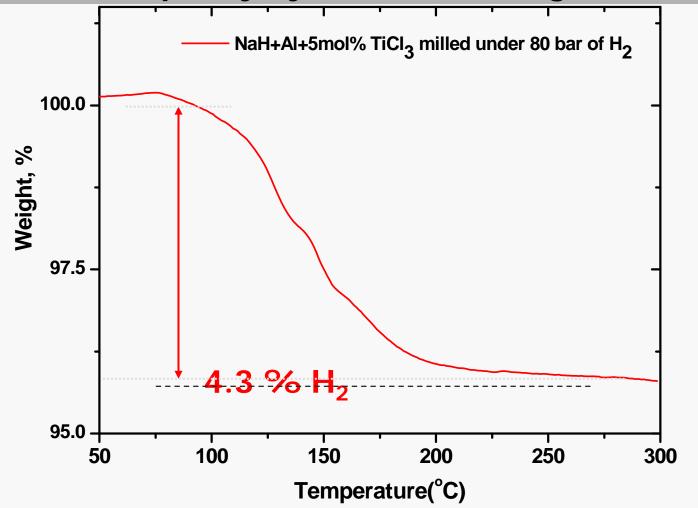

- -Metal hydride hydrogen storage system For a fuel cell vehicle
- -metal hydride
- -alkali metal complex
- Mg based hydrogen storage material



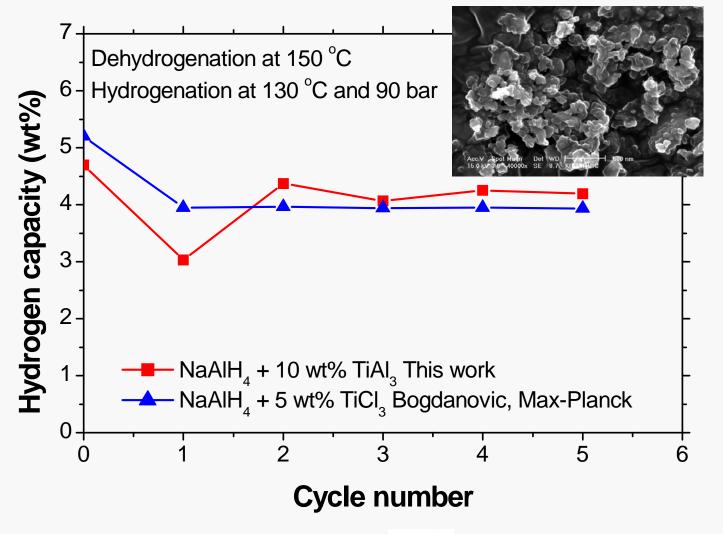

Results and Accomplishments: Ti_{0.32}Cr_{0.43}V_{0.25} Alloy


➤ Improved effective hydrogen storage capacity : 2.3 wt%(total 3.7wt%) and 140kg of H₂/m³ (gravimetric and volumetric values at 303K)

- > Excellent cyclic ability
 - : More than 2 wt% even after 1000 cycles of pressure swing cyclic tests
- **Excellent hydrogen absorption rate**
 - : More than 95% is absorbed within the first 10 min of the first cycle and more than 98% within the first 2 min after a few cycles



S. W. Cho, G. Shim, G.S. Choi, C.N. Park, J.H. Yoo and J. Choi, "Hydrogen absorption-desorption properties of Ti0.32Cr0.43V0.25 alloy", J. Alloys Compd, 430: 136-141(2007)

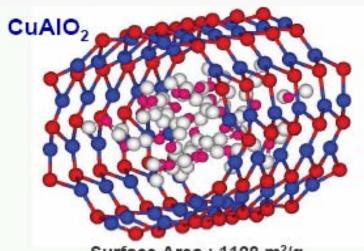

Alkali-metal hydride- Improvement of storage capacity by reaction milling

Cycle performance of NaAlH₄ with nano-catalyst

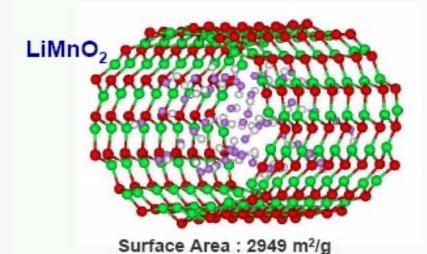
S3. Porous nanostructured materials

R&D Objectives

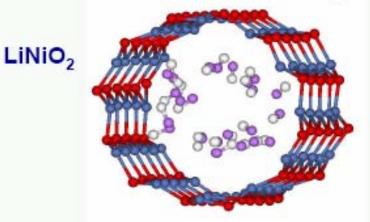
- Study on the nano-materials for hydrogen storage


❖Content of R&D Activities

- High density porous carbon and metal/carbon composites
- Surface functionality of nanoporous carbon for hydrogen storage
- Hydrogen storage materials based on molecular crystals and metal-dispersed materials
- Synthesis of transition metal-dispersed nanotubes
- Optimized materials design using quantum simulations
- Search for new class of hydrogen storage materials: non-covalent bonded molecular crystals
- Characteristic Research of porous nanostructured materials based on molecular modeling


If any question, contact: Dr. Hae-Jin Kim, hansol@kbsi.re.kr

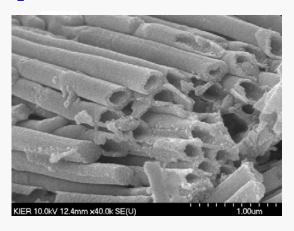
MD Simulation of H2 Storage in Metal Oxide Nanotubes

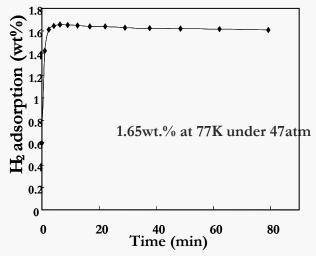


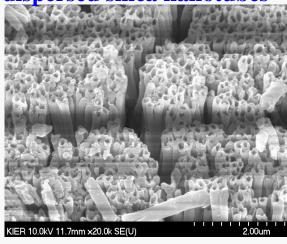
Surface Area: 1128 m2/g

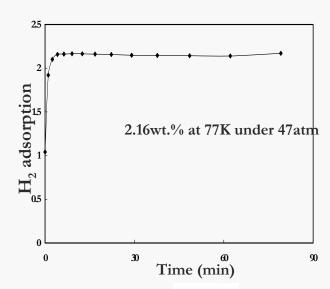
LiTi₂O₄

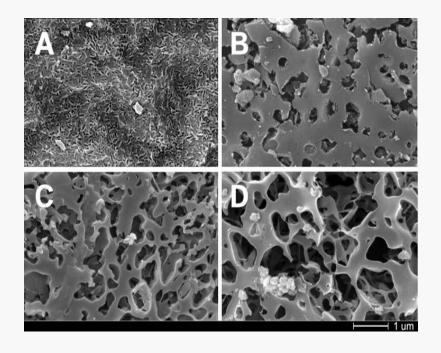
Surface Area: 1860 m²/g

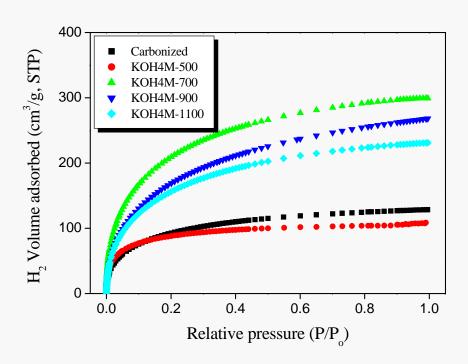



Surface Area: 1322 m2/g




☐ Li-dispersed nickel oxide nanotubes

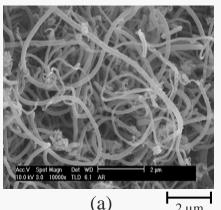

☐ Li-dispersed silica nanotubes



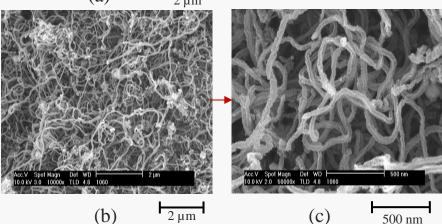
Carbon Molecular Sieves from Polymeric Precursor

Pore size-controlled carbon molecular sieves; (a) as-received, (b) KOH-1.0, (c) KOH-2.0,

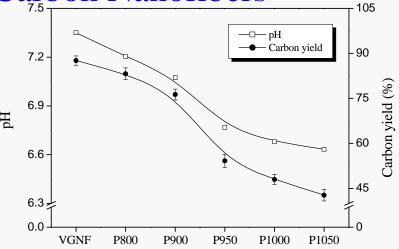
(d) KOH-4.0



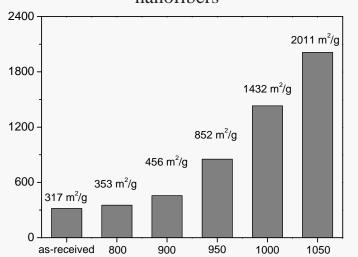
(H₂ adsorption at 77K)



Preparation of Porous Carbon Nanofibers



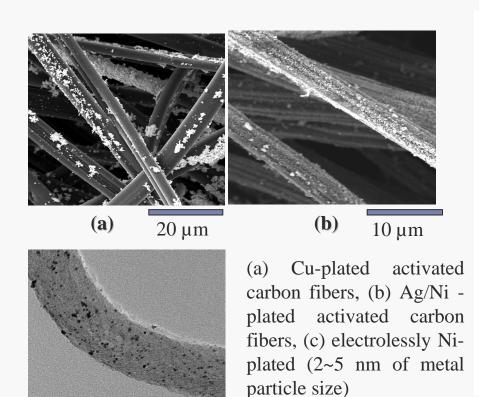
Porous carbon nanofibers were achieved by a physical activation method at 1000°C, resulting in obtaining over 2000 m²/g of specific surface area

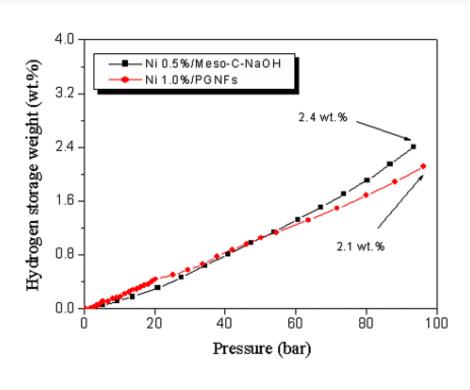

Nanotechnology 17, 4395 (2006)

(a) as-received, (b) porous carbon nanofibers activated at 1050°C, (c) magnification of (b).

Surface pH and Carbon yield of porous carbon nanofibers

Specific surface area of porous carbon nanofibers

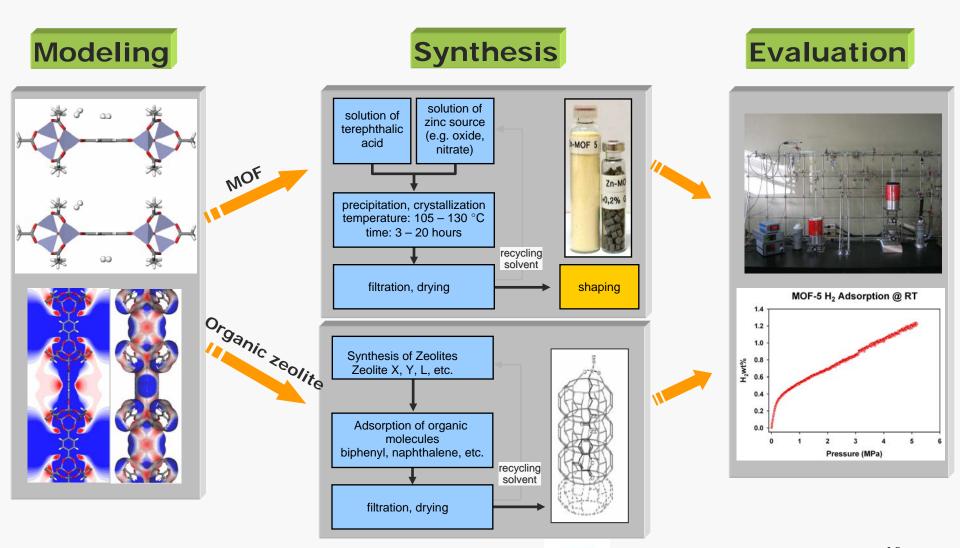

Hydrogen Energy R&D Center



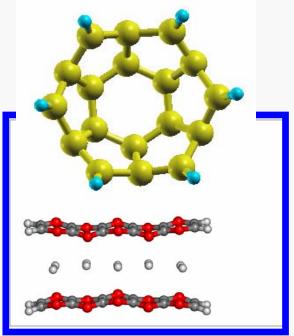
(c)

200 nm

Nanosized Metal-loaded Carbon Materials



Hydrogen storage behaviors after transition metal loading


S4. New Material Search

New building Blocks for Hydrogen Storages Based on Non-covalent Bonding

Selection rule and strategy

- •Binding energy
- •Structural characteristics
- •Doping & structural changes
- •Ab initio quantum simulations

Candidate materials

- •Metal-dispersed nanostructures
- •Molecular crystals

Target

- •Design new materials based on non covalent bonding
- Optimize binding energy and ratio
- •Metal dispersion without clustering

S5. Evaluation of Hydrogen Storage/Discharge Materials

- Measurement of hydrogen storage/discharge amount in various hydrogen storage materials (volumetric measurement method, gravimetric measurement method)
- Database of hydrogen storage materials
- Standardization of measurement methods for hydrogen storage/discharge materials

Volumetric (left)/Gravimetric (right) Measurement Equipments

HERC Budget

	Funding (KRW in millions)				
Activity	FY 2005 Approp	FY 2006 Approp	FY 2007 Actual	FY 2008 Request	
Hydrogen Production	3675	4295	4415		
Electrolysis	600	810	840		
Steam Methane reforming	1060	600	630		
Biological	650	800	800		
Photochemical/PEC	860	1515	1575		
Thermochemical	505	570	570		
Hydrogen Storage	3230	3140	3199		
Metal hydride	1120	990	972		
Nanostructured material	1120	1300	1347		
Chemical Hydrogen Storage	535	550	550		
Evaluation	455	300	330		
Others	1870	1499	1751		
TOTAL	8775	8934	9415		

For More Information

Hydrogen Production Groups

Hydrogen Storage Groups

Hydrogen Utilization Groups

Wang-Lai Yoon Steam Methane Reforming wlyoon@kier.re.kr

Mi-Sun Kim Biological bmmskim@kier.re.kr

Sang-Jin Moon Photochemical moonsj@krict.re.kr

Chu-Sik Park
Thermochemical
cspark@kier.re.kr

Sang-Kook Woo
High temperature electrolysis
skwoo@kier.re.kr

Young-Hwan Cho *Metal Hydride*

oze@kist.re.kr

Hae-Jin Kim

Nanostructured Material hansol@kbsi.re.kr

Suk-Woo Nam
Chemical Hydrogen Storage
swn@kist.re.kr

Sang-sup Han
Evaluation of Hydrogen storage
material
sshan@kier.re.kr

Si-Deok Oh Hydrogen engine/power ohsidk@hyosung.com

Ho Jun Lee Sensor seju@hanafos.com

