

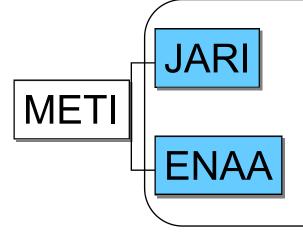
Hydrogen Stations - JHFC Activities in FY2008 -

March 9-11, 2009 IPHE 11th ILC Meeting Oslo, Norway

Jinichi TOMURO

tdd325@enaa.or.jp

Engineering Advancement Association of Japan



Framework of JHFC Project

Japan Hydrogen & Fuel Cell Demonstration Project

Subsidized by METI

FCV Demonstration Study

Hydrogen Infrastructure Demonstration Study

METI: Ministry of Economy, Trade and Industry

JARI: Japan Automobile Research Institute

ENAA: Engineering Advancement Association of Japan

Outline of JHFC2

Vehicles	Hydrogen FCV's, ICE vehicles and other small carriers			
Fuel Supply	Compressed gaseous hydrogen and liquid hydrogen			
Project terms	FY2006 - 2010			
Project budget	FY2006 1,300 million JPY FY2007 1,800 million JPY FY2008 1,300 million JPY			

Objectives of JHFC2

- To clarify remaining issues under the actual using conditions
- 2. To collect data to develop regulations, codes and standards
- 3. To formulate and implement public relations and educations for dissemination and promotion
- 4. To verify the energy savings (fuel economy) and environmental impact
- 5. To identify technology and policy trends
- of FCV's, fuel cell powered small vehicles and hydrogen ICV's as well as hydrogen infrastructures

Features of JHFC 2

Fleet tests by third parties

Increase of hydrogen users (not limited to FCV's but small FC carriers and hydrogen ICV's)

Area extension (metropolitan Tokyo, Nagoya and Osaka)

Operation of FC buses and hydrogen station in Centrair Airport region

Operation of FC wheel chairs, FC carts and FC-assisted bicycles and operation of hydrogen stations for them in Osaka region

Participating Vehicles

Toyota FCHV

Nissan X-TRAIL FCV

Honda FCX

Daimler-Chrysler F-Cell

GM Hydrogen3

Toyota / Hino FCHV-BUS

Suzuki MRwagon-FCV

Mazda RX-8 Hydrogen RE* * New ICV participants in JHFC2

FCV: Fuel Cell Vehicle

ICV: Internal Combustion engine Vehicle

Participants

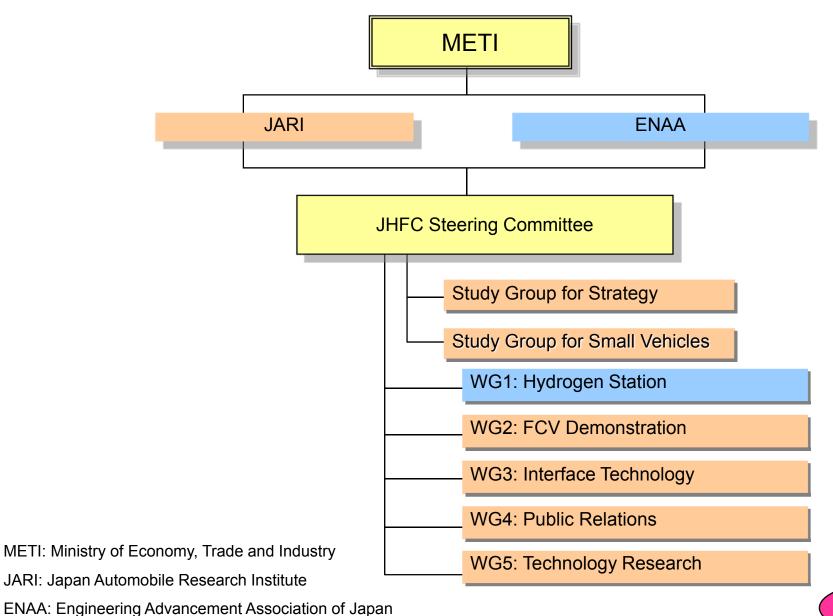
8 automobile manufacturers and 16 energy or infrastructure companies are participating JHFC2.

Automobile manufacturers

DaimlerChrysler

Energy or Infrastructure companies

OSAKA GAS


KURIMOTO

FY2007 JHFC Organization

Contents

- 1. General Issues for Demonstration of Hydrogen Stations
- 2. Operation of Hydrogen Stations
- 3. 70 MPa Facility Addition
- 4. Estimation of Onboard Tank Volume (35 MPa)
- Efficiency Evaluation and Cost Estimation of Hydrogen Stations
- 6. Hydrogen Quality
- 7. Safety of Station Operation
- 8. Preliminary Feasibility Study for CCS
- 9. Future Plan
- 10. Summary

General Issues for Demonstration of Hydrogen Stations

General Issues for Demonstration of Hydrogen Stations

In regard to FCV's etc. and hydrogen infrastructure:

- To clarify remaining issues under the actual conditions of use
- To demonstrate effectiveness and issues of storage and operation at higher pressures such as 70 MPa
- To collect data to develop regulations, codes and standards
- To formulate and implement public relations and education for dissemination and promotion
- To verify the energy savings (fuel economy) and environmental impact
- To identify technology and policy trends

This presentation discusses topics related to hydrogen stations.

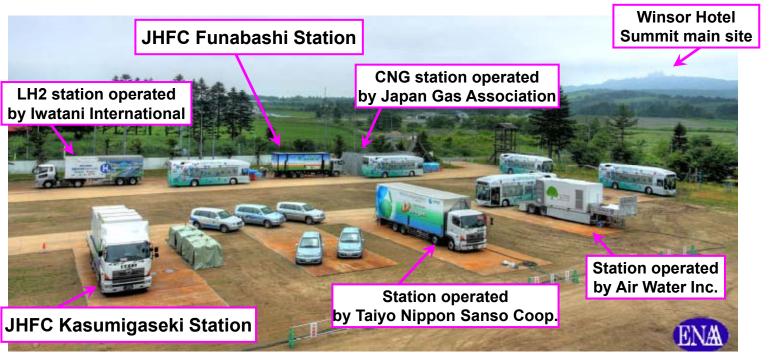
Operation of Hydrogen Stations

Operation of Hydrogen Stations

- 11 JHFC hydrogen stations and liquid hydrogen production facility have been operated safely.
- JHFC hydrogen stations cumulatively supplied 42,658 kg hydrogen with 16,969 refuelings during the period from December 2002 to December 2008.
- 70 MPa facilities were added to 4 stations (Senju, Asahi, Daikoku, Kasumigaseki (mobile)) and started operation.

Senju Station will be further modified so that the vehicle might be able to be refueled at a flow rate as high as 2.0 kg/min by changing piping materials and so on.

Funabashi station (mobile) was renovated as a 70 MPa station, but was assigned to operate for Kasumigaseki station due to vehicles' demand.



Topics

Mobile Hydrogen Stations refueled hydrogen to FC buses and FCV's for G8 Hokkaido Toyako Summit.

44 refuelings, 264 kg of H₂ for 5 FC Buses 33 refuelings, 66 kg of H₂ for 10 FC passenger vehicles

This operation demonstrated effectiveness of mobile stations even for the heavy duty vehicles such as FC buses. A very large demonstration for a worldwide famous event.

Mobile Station Complex, a joint project of Ministry of Foreign Affairs of Japan and JHFC, consisting of five hydrogen stations and a CNG station. This operated from June 26 to July 11, 2008 at the play ground of the former elementary school in the town of Toyako.

70 MPa Facility Addition

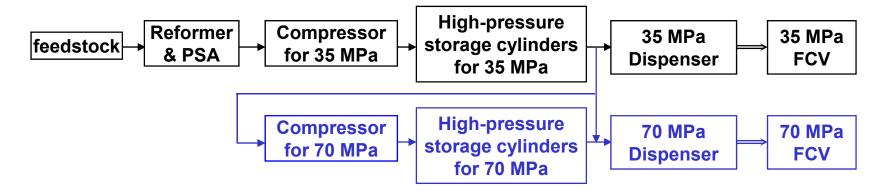
70 MPa Facility Addition

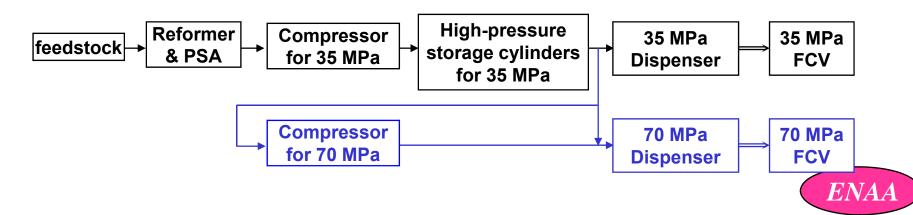
In order to extend driving range, 70 MPa on-board storage for FCV is beginning to be considered worldwide. 70 MPa hydrogen stations are necessary to support demonstration of such FCV's.

70 MPa facilities were added to 4 existing JHFC hydrogen stations.

Specification of JHFC 70 MPa Stations

Station	Senju	Asahi	Kasumigaseki (mobile)	Daikoku	
Refueling pressure	70 MPa				
Refueling capacity	1	3 passenger vehicle			
H ₂ storage cylinders for 70 MPa		No			
Flow rate (kg/min)	0.1 - 2.0	0.1 - 0.85	0.1 - 0.85	0.1 - 0.3	
Refueling protocol	Several protocols to be tested				
H ₂ pre-cooling	-20 C	-5 C	-5 C	No	


ENAA


JHFC Concept of 70 MPa Facility Addition

70 MPa facilities were added to 4 existing JHFC stations. Different 70 MPa Refueling method

(1) Cascade (Senju, Asahi, Kasumigaseki(mobile))

(2) Cascade and Compressor (Daikoku)

JHFOpening Celemony of JHFC 70 MPa Stations

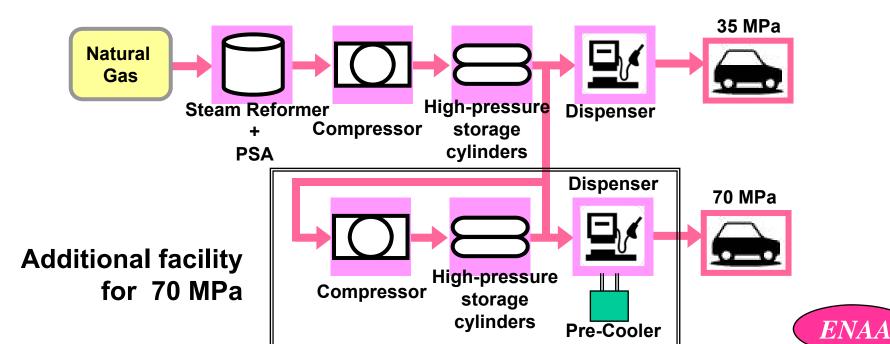
Mr. Kawahara from METI celebrated the opening.

JHFC Senju Hydrogen Station

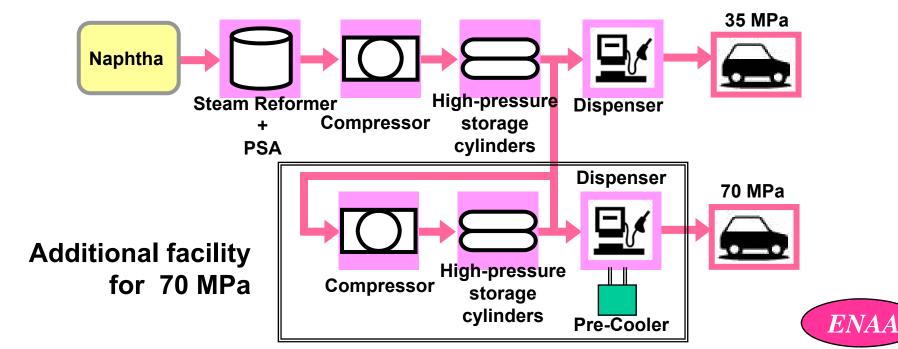
70 MPa FCV's (Toyota, Nissan, Suzuki)

Start refueling of 70 MPa hydrogen

Held at 13:00-14:00 on Sep. 12, 2008 at JHFC Senju Station. Guests from METI, NEDO &c. and 35 press people attended. Technical presentation and refueling demonstration followed test-ride.

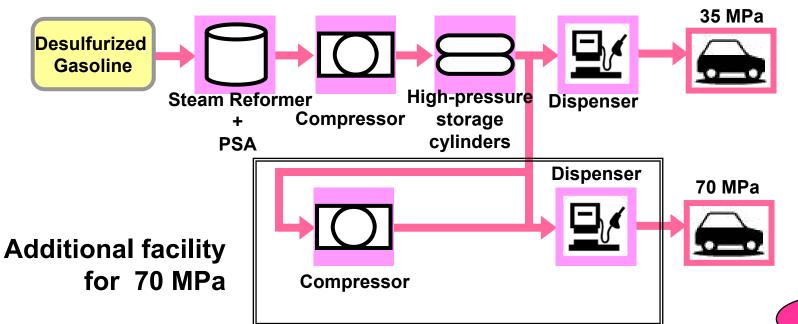

Senju Hydrogen Station 70 MPa Facility Addition

Operation started on Sep. 12, 2008

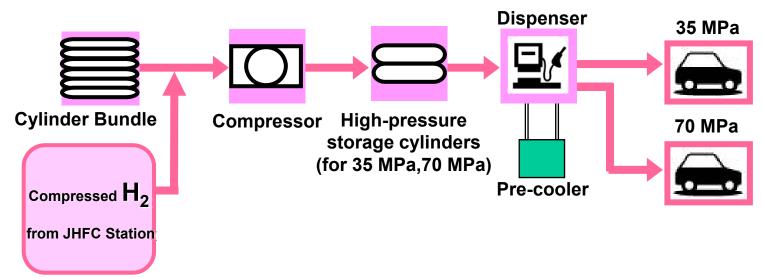

Asahi Hydrogen Station 70 MPa Facility Addition

Operation started on Feb. 2, 2009

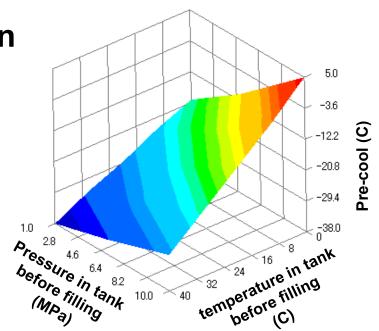
Daikoku Hydrogen Station 70 MPa Facility Addition



ENAA

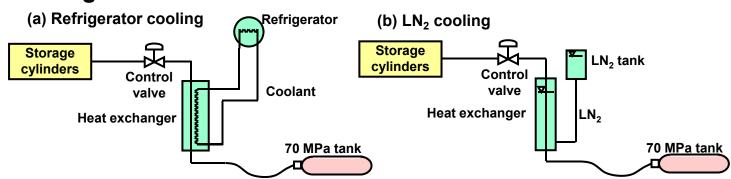

Kasumigaseki Hydrogen Station (re-locatable) 70 MPa Facility Addition

Funabashi station (mobile) was renovated as a 70 MPa station, but was assigned to operate for Kasumigaseki station due to vehicles demand.



JHF Pre-Cooling System Analysis (1)

Temperature rise of hydrogen


Relation among pre-cooled H₂ temperature, initial pressure, initial temperature and temperature after fulfilling has been estimated.

Optimal pre-cooling system will be further investigated.

Example: Fulfill for 3 minutes

Pre-cooling method

5.00 2.85 0.70

-1.45-3.60-5.75

-7.90

-10.05-12.20

-14.35-16.50

-18.65-20.80

-22.95 -25.10

-27.25

-29.40-31.55

-33,70 -35.85

-38.00

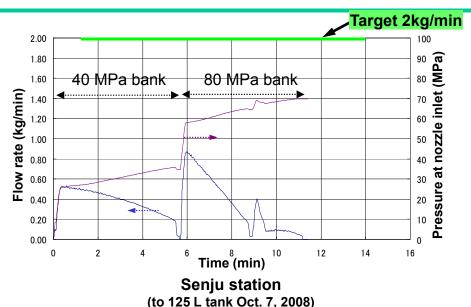
Pre-cooling System Analysis (2)

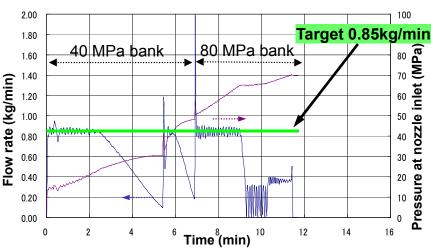
Behavior of cooled nozzle

Before actual refueling, effect of ice and condensed water at the cooled nozzle surface was surveyed.

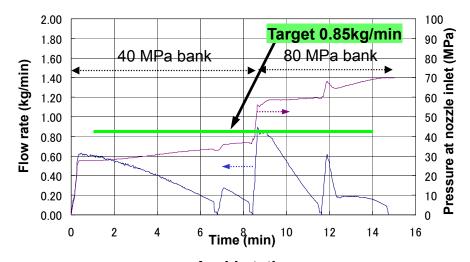
- 1. Objective: To confirm hazardous behavior by ice and/or condensed water at the nozzle surface after refueling pre-cooled H₂.
- 2. Method: To observe the state of ice and/or condensed water after precooled H₂ at -5 to -20 C flows through the nozzle for a certain period.
- 3. Results: Although ice is observed at the nozzle surface, they found no detaching trouble and hydrogen leakage.

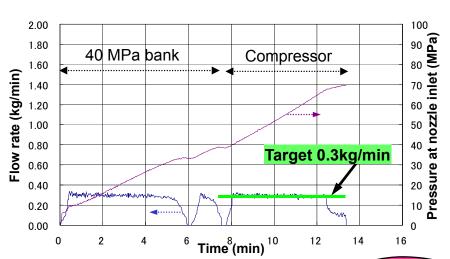
Ice at the nozzle surface


Condensed water


Tested nozzle

Results were also confirmed by the actual 70 MPa refueling with pre-cooling.




70 MPa Refueling

Kasumigaseki station (mobile) (to 100 L tank Jan. 14, 2009)

Daikoku station (to 125 L tank Dec. 9, 2008)

ENAA

Asahi station (to 160Ltank Jan. 21, 2009)

Dispenser nozzle

for 70 MPa

JHF 70 MPa Hydrogen Stations Overseas

There are two major methods to refuel 70 MPa hydrogen; Cascade and Cascade + Compressor.

Both stations below used Cascade + Compressor, cascade filling up to 35 MPa followed by compressor direct filling up to 70 MPa.

Dispenser for 35 & 70 MPa

Berlin, Germany(CEP)

Dispenser nozzle for **70 MPa**

Dispenser for 35 & 70 MPa

Stavanger, Norway

Summary of 70 MPa Facility Addition

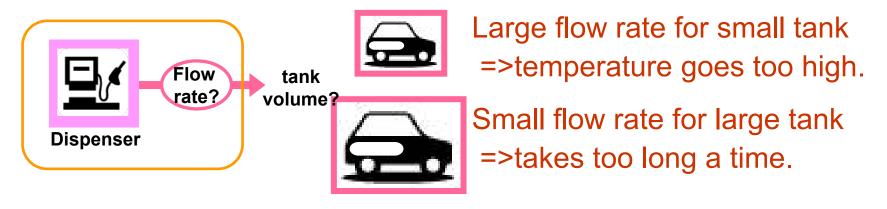
70 MPa facilities were added to 4 existing JHFC hydrogen stations (Senju, Asahi, Daikoku, Kasumigaseki) and their operation started.

4 JHFC 70 MPa stations cumulatively refueled hydrogen to FCV's over 50 times up to the end of December 2008 and are safely operated.

Senju Station will be further modified so that the vehicle might be able to be refueled at a flow rate as high as 2.0 kg/min by changing piping materials.

Further collection of 70 MPa refueling data will be continued for

developing regulations, codes and standards finding operating issues investigating appropriate filling pressure.



Estimation of Onboard Tank Volume (35 MPa)

Estimation of Onboard Tank Volume(35 MPa)

Objective: to establish common and safe filling procedure by using estimated volumes of various tanks onboard. (Currently, different FCV's requests different flow rates.)

Method: to estimate tank volume by filling a small amount of H₂ and evaluating pressure rise.

Last year: using equation of state for ideal gas, PV=mRT resulted accuracy: 15% (not very accurate) => more accurate estimation is required

ENAA

Improved Estimation

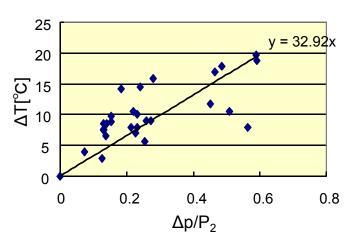
Equation of state PV=zmRT introducing compressibility factor, z, for real gas

Amount of H₂ filled $\Delta m = V(P_2/z_2T_2 - P_1/z_1T_1)/R$

$$V = \frac{R\Delta m}{f} / (P_2/z_2T_2 - P_1/z_1T_1)$$
known
$$z_2, T_2 : unknown$$
known

z₂ is a function of P₂ and T₂
 -> T₂ prediction will give accurate V

Prediction of gas temperature in the tank after filling a small amount of H₂ is essential.



Estimation of Gas Temperature in the Tank

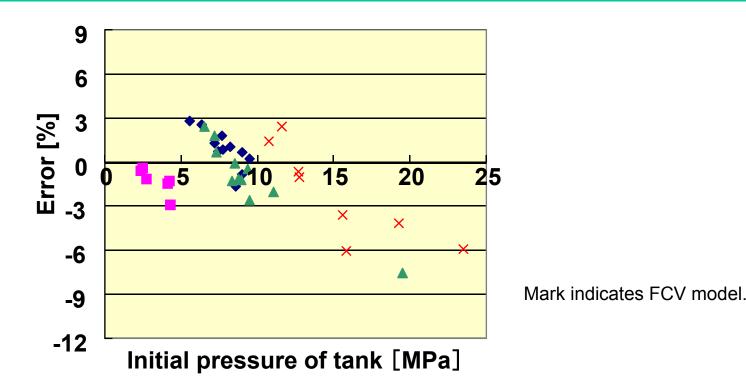
Before filling

Gas temperature in the tank is expected to be similar to the ambient temperature.

When the pressure is low, mass of gas in the tank is small and no significant effect of initial gas temperature from the energy point of view.

After filling of a small amount of H₂ Heat release can be neglected due to the short period of time. Enthalpy increase is proportional to the amount of filled H₂. Temperature rise can be expressed as follows.

$$\Delta T = \alpha \Delta p/P_2$$


Empirical equation from test results at Senju Station became

$$\Delta T = 33\Delta p/P_2$$

Summary of Onboard Tank Volume Estimation

Accuracy of volume estimation: within 3%

Higher initial pressure tends to increase error (Volume is underestimated.

-> safety side and acceptable.)



Efficiency Evaluation and Cost Estimation of Hydrogen Stations

Senju Station (70 MPa, with pre-cooling)

Actual operating data will be further collected and evaluated in different seasons and for different pre-cool temperatures.

Senju Station (70 MPa, with pre-cooling)

On-site Steam Reforming of Natural Gas

Energy consumption per 1 kg H₂

Input	Consumption	Input Energy in MJ		
		LHV	ННУ	
Natural Gas	3.70 kg 4.37 m³(nor)	182 MJ	201 MJ	
Electricity	9.01 kWh	32.4 MJ		

Calculated Energy of Product H₂: 128 MJ/kg(LHV), 150 MJ/kg(HHV) (70 MPa gauge, 298K)

Efficiency = 59.7 %(LHV) 64.2 %(HHV)

For 35 MPa 60.7 % (LHV) 65.2 % (HHV) see Appendix for detail

Previous Cost Estimation and Cost Evaluation in FY2008

Summary of previous hydrogen cost estimation

Natural Gas Reforming type Hydrogen Station (300 m³(nor)/h)

Result of estimation for H₂ production

Construction Cost: 600 million yen (35 MPa),

700 million yen (70 MPa)

 H_2 production Cost: $110 - 170 \text{ yen/m}^3(\text{nor})$

Estimated H₂ cost is 3 - 4 times higher than the METI target cost of

40 yen/m³(nor) in 2020. Further study to reduce H₂ cost is necessary.

Cost evaluation in FY2008

Preliminary evaluation of construction cost in 2015 – 2020.

R&D and deregulation expected by that time is taken into account.

Joint project by JHFC WG1 members as well as equipment manufacturers.

Final issue is to evaluate H₂ cost, but only to evaluate cost of equipment greatly affecting hydrogen stations.

Assumptions for Cost Evaluation

Assumptions:

100,000 FCV's, 50 Hydrogen Stations

Station type: On-site

H₂ production capacity: 27 kg/h (300 Nm3/h)

Onbord tank capacity: 5 kg-H₂/passenger vehicle

Remaining H₂ at refueling: 1 kg-H₂/passenger vehicle

Maximum refueling frequency: 20 vehicles/h

 $(80 \text{ kg-H}_2/\text{h})$

Parameters

Refueling pressure: 35, 44, 50, 70 and 88 MPa

Refueling period (fulfill): 3, 5, 10 min

Refueling method: Cascade or

Cascade + Compressor

Firstly, current costs were evaluated.

JHFC Current cost of Major Components

	Current cost (million yen)	Parameter*) dependence
Reformer	150 – 186	No
Compressor	50 – 110	Yes (strong)
High-pressure storage cylinders	39 -	Yes (very strong)
Dispenser	15 -	Yes (fairly strong)
Pre-cooler	17 -	Yes (fairly strong)
total	roundly 300 -	Yes (250 million yen difference between 35 MPa and 70 MPa stations)

Construction, piping and wiring costs are extra.

Results cannot be directly compared with those previously disclosed in the JHFC product.

Further cost reduction is definitely necessary

^{*)}parameter : filling pressure, filling period, filling method

Cost Reduction Feasibility

Reformer	Simplified system, reduction of parts Target is 50% of current cost.
Electrolizer	Key components (electrode, separator), power supply, rectifier
Compressor	Cylinder type, oil-driven booster, &c.
High-pressure storage cylinders	Large-scale cylinder, mass production through standardization, cost reduction using material other than steel, number reduction through the combination of cascade and compressor-drive filling.
Dispenser	Target is 50% of current cost.
Common (parts & equipments)	Imported parts, similar equipment widely used
Others	Layout optimization, cost reduction of general installation at the site.

Investigation to be continued.

Hydrogen Quality

Product Hydrogen Analysis

Hydrogen supplied by JHFC stations has been precisely analyzed to confirm impurities in it.

Station	Mar. '04	Mar. '05	Sep. '05	Feb. '07	Dec. '07	Dec. '08
Daikoku	0	0	0	0	0	0
Asahi	0	0	0	-	0	-
Senju	0	0	0	0	0	0
Kawasaki	0	0	0	0	0	0
Ome	/	0	0	0	/	/
Hadano => Ichihara	/	0	0	0	0	0
Seto-North	/	0	0	/	/	/
Seto-South => Centrare	/	0	0	0	0	0
Sagamihara	/	0	0	0	N_2	N_2
Ariake	/	0	0	0	-	-
Tsurumi	/	0	0	/	/	/
Osaka	/	/	/	/	0	0

Notes

o : all species analyzed $N_2 : N_2$ only - : undone / : not operating

Results have been reported at JHFC Seminar every year. Results of FY2008 is reported in detail in the appendix.

Summary of Gas Analysis

	Species		Results	JHFC	ISO/TC197 TS
	H_2			99.99%	99.97 %
	СО	mostly	< 0.01 ppm	1 ppm	0.2 ppm
		at its worst	0.18 ppm		one populari
	CO ₂	mostly	< 0.01 ppm	1 ppm	2 ppm
	CO_2	in a few occation	1 ppm	т ррпп	Ζ ρρπ
	O_2	in all cases	< 0.01 ppm	2 ppm	5 ppm
	N_2		85 – 0.03 ppm	50 ppm	100 ppm
∃.	Ar		7.26 – 0.03 ppm		100 ppm
pu	He		9 – 3 ppm		300 ppm
impurities	Hydrocarbon		0.99 – 0.05 ppm	1 ppm	2 ppm
Š			24 – 0.5 ppm		
	H ₂ O	only once for	,		5 ppm
		when H ₂ O exc	· · ·		
	Sulfur compounds	in all cases	< 0.0001 ppm		0.004 ppm
	HCHO	in all cases	< 0.01 ppm		0.01 ppm
	НСООН	in all cases	< 0.01 ppm		0.2 ppm
	NH_3	in all cases	< 0.001 ppm		0.1 ppm

Results indicated that hydrogen supplied by JHFC stations almost meets ISO/TC197/WG12 TS (Technical Specification).

Safety of Station Operation

Safety Learning (FY2008)

Date	Content	Hydrogen Leakage
May '08	Pressure rise due to the ambient temperature change resulted in alarm.	No
May '08	Malfunction of valve.	No
May '08	Operation became unstable due to the reforming catalyst degradation.	No
May '08	Too low an output voltage from UPS disabled emergency water spray.	No
	Abnormal temperature of reformed gas at the exit of heat exchanger.	No
Jun. '08	Water condensation at the valve driving assembly due to the malfunction of the dryer for instrument air.	No
	Malfunction of flame detector caused emergency shutdown.	No
Jul. '08	Alarm relating to lubricating oil of the compressor	No
Jul. '08	CO analyzer became unstable due to the secular change of infrared lamp.	No
Jul. '08	Malfunction of the sensor for water treatment of steam reformer.	No
Jul. '08	Malfunction of sequencer module for steam reformer.	No
Jul. '08	Water leak from the strainer of the water treatment unit.	No
Nov. '08	Malfunction of air-driven valve caused alarm.	No
Nov. '08	After the maintenance, valve mode was not properly restored.	No
Nov. '08	Dust in the instrument air caused valve malfunction.	No
Dec. '08	Malfunction of the touch panel for the dispenser controller.	No
Dec. '08	Malfunction of valves of feedstock compressor.	No

Safety Learning: Example (1)

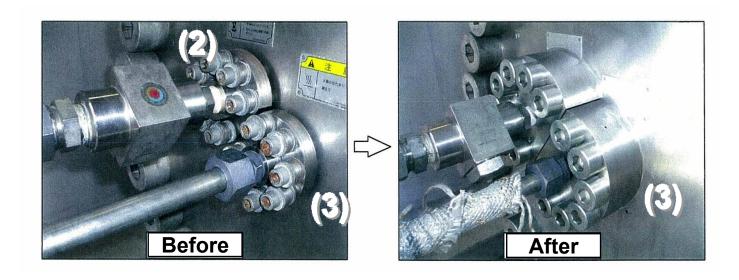
Performance of heat exchanger inside the hydrogen producer became less effective.

- 1. What happened:
 The temperature of reformed gas at the exit of heat exchanger became too high.
- 2. Possible causes and measures:
 The cooling water line inside the heat exchanger seemed to be plugged by aragonite(CaCO₃)
 magnesian calcite((Ca,Mg)CO₃)
 hemimorphite(Zn₄Si₂O₇(OH)₂•H₂O)
 &c.

Proper water treatment and monitoring will be investigated.

Plugged part inside heat exchanger

Safety Learning: Example (2)

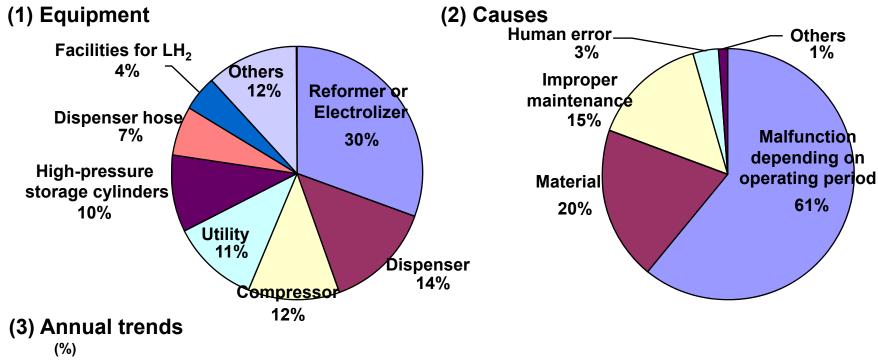

Hydrogen leak from compressor

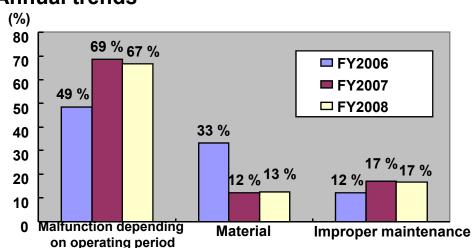
- 1. Status: A small leakage of hydrogen was found at the diaphragm head sealed by O-ring. The operating pressure is 40 MPa.
- 2. Cause: O-ring damage was due to vibration of the compressor
- 3. Measures: Sealing assembly and surrounded parts were rebuilt to exclude the vibration effect.

New design of O-ring sealing assembly. (not shown)

New structure to prevent loosening of bolts shown at (2).

Unified flange structure to prevent vibration propagation at (3).





Safety Learning Analysis

JHFC hydrogen stations experienced 92 incidents and malfunctions for 3 years from FY2006 to FY2008.

Further attentions should be paid especially for 70 MPa equipment.

Preliminary Feasibility Study for CCS

(Carbon Dioxide Capture and Storage)

Preliminary Investigation of CCS by PSA (1)

CO₂ recovery is an important issue for a hydrogen station with on-site reforming. Feasibility of CCS has been preliminarily investigated.

Commercial-scale hydrogen station with on-site hydrogen production.

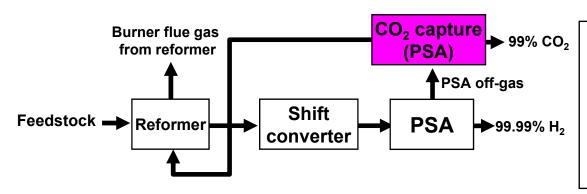
System: Steam Reforming of Natural Gas

Production Capacity: 27 kg/h (300 Nm³/h)

Hydrogen Purity: 99.99 %

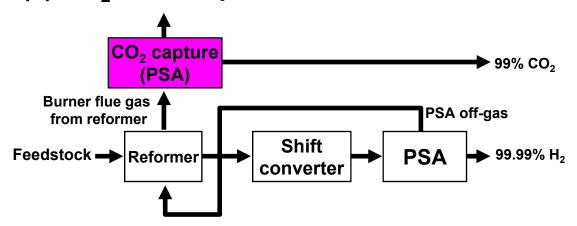
Refueling Pressure: 35 MPa

Location of CO₂ capture


- (1) CO₂ to be captured from PSA off-gas
- (2) CO₂ to be captured from reformer burner flue gas

Preliminary Investigation of CCS by PSA (2)

(1) CO₂ to be captured from PSA off-gas



CO₂ captured by PSA: 70 % Overall CO₂ capture: 50 %

Capital cost for CCS: 35,000,000 yen CCS cost (including depreciation) 12 yen/kg-CO₂

23 yen/Nm³-H₂

(2) CO₂ to be captured from reformer burner flue gas

CO₂ captured by PSA: 50% Overall CO₂ capture: 50%

Capital cost for CCS: 71,000,000 yen CCS cost (including depreciation) 23 yen/kg-CO₂ 44 yen/Nm³-H₂

CO₂ capture from PSA off-gas was found feasible.

Future Plan

Future Plan

Operation of 70 MPa stations to be continued and refueling data to be accumulated.

(Senju station will be further modified to realize higher flow rates.)

Operation of hydrogen stations and Information sharing of safety learning to be continued.

Efficiency evaluation and cost estimation in order to investigate appropriate filling pressure to be continued.

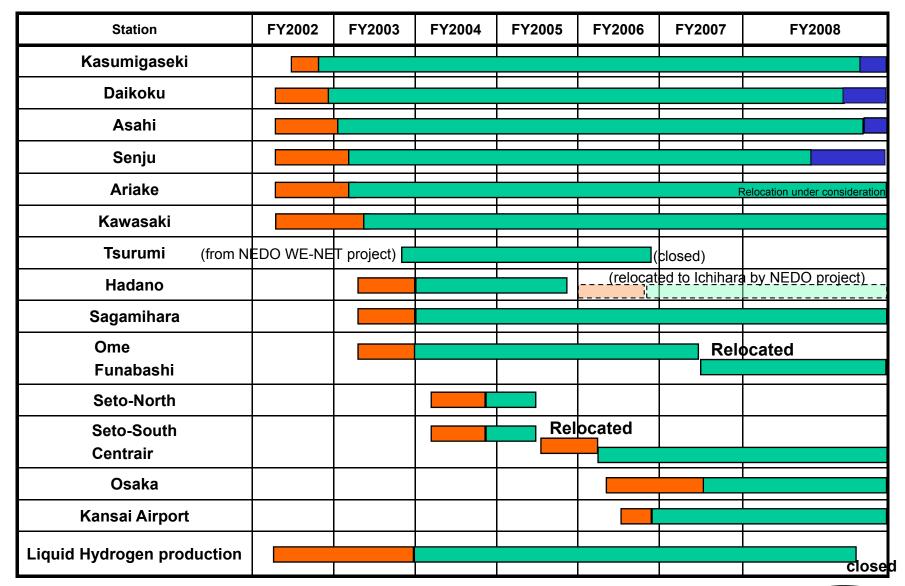
Survey for the station system in the future.

Further investigation for safety and deregulation.

Business model analysis for commercialization.

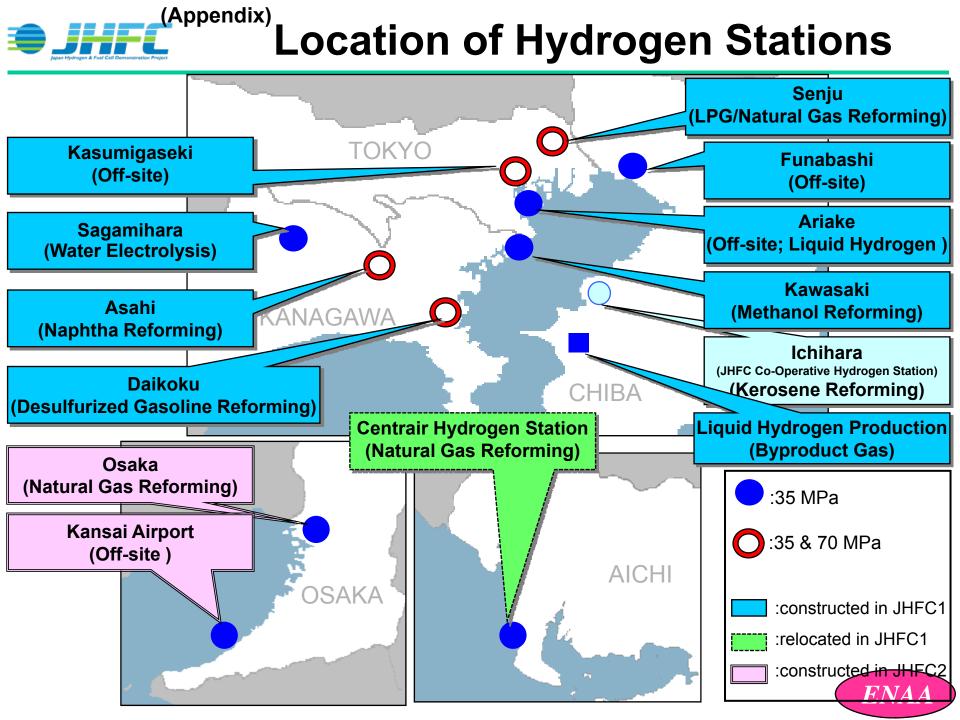
Summary

- JHFC stations have been operated safely and supplied cumulatively 42,658 kg hydrogen with 16,969 refuelings during the period from December 2002 to December 2008.
- 70 MPa facilities were added to 4 existing JHFC hydrogen stations (Senju, Asahi, Daikoku, Kasumigaseki) and their operation started. Senju Station will be further modified so that the vehicle might be able to be refueled at a flow rate as high as 2.0 kg/min by changing piping materials and so on.
- Improvement of accuracy of volume estimation of onboard tank has been investigated. The effect was confirmed during actual refueling.
- Efficiency of JHFC 70 MPa station with pre-cooling of hydrogen is evaluated.
 Investigation of major factors governing cost reduction is started.
- Precise analysis of impurities in hydrogen actually supplied by JHFC stations indicated almost satisfactory in regard to ISO/TC197 WG12 specification.



Appendix

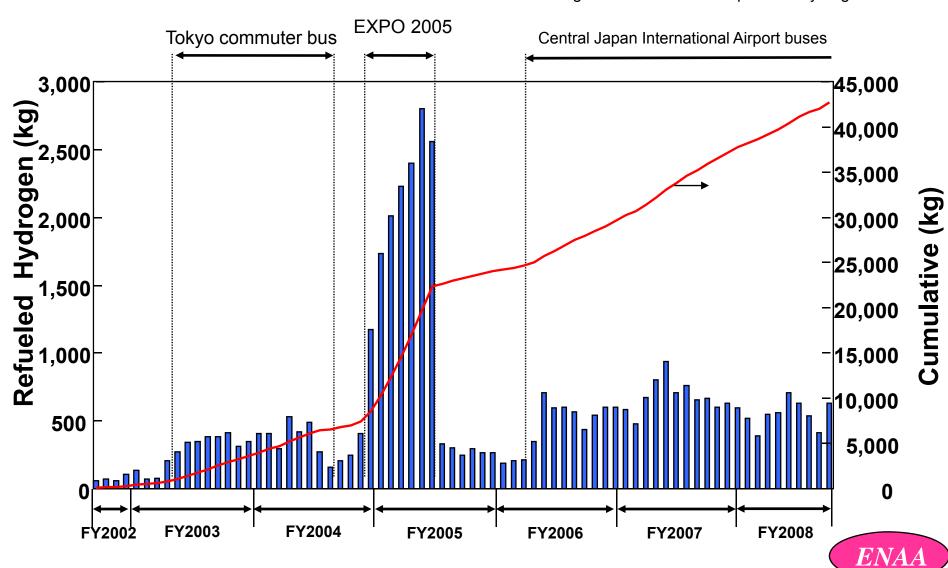
Status – Hydrogen Stations



: Design & Construction

: Operation

: 70 MPa Facility Additon



Refueling – All JHFC Stations (1)

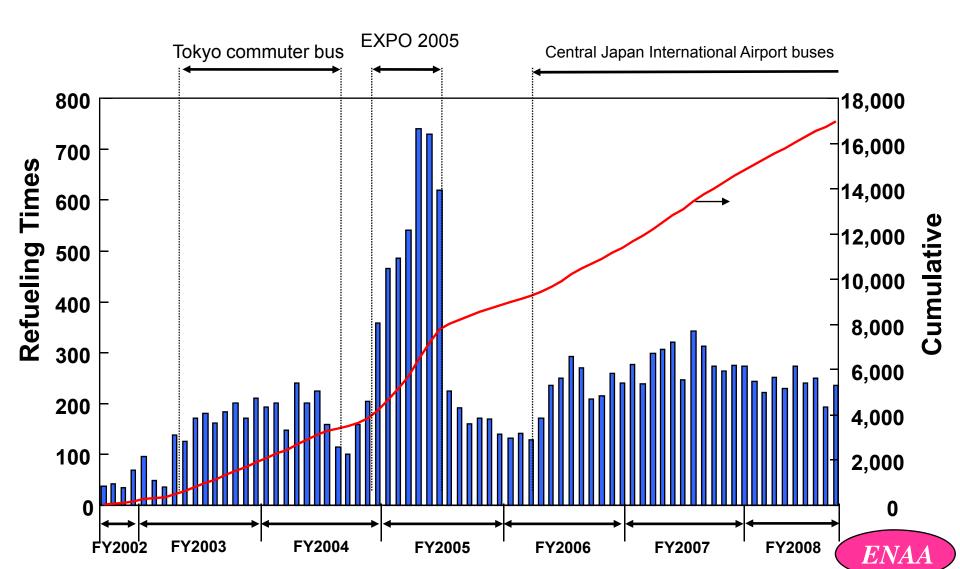
H₂ Refueling :42,658kg*(Dec. 2002 – Dec. 2008)

* Including Result of JHFC Co-Operative Hydrogen Station

(Appendix) Refueling – All JHFC Stations (2)

							Refueled	<u>Hyaroge</u>	<u>en (kg)</u>
Station	Opening	FY2002 (-Mar.'03)		FY2004 (Apr.'04-Mar.'05)	FY2005 (Apr.'05-Mar.'06)	FY2006 (Apr.'06-Mar.'07)	FY2007 (Apr.'07-Mar.'08)	FY2008 (AprDec.'08)	Total**
Kasumigaseki	Dec.'02	234	758	1007	883	694	886	604	1962
Daikoku	Mar.'03	65	354	597	511	409	406	309	2651
Asahi	Apr.'03	-	171	184	253	236	176	65	1086
Senju	May.'03	-	279	376	424	383	308	240	2009
Ariake	May.'03	-	1670	1540	734	515	1050	396	5906
Kawasaki	Aug.'03	-	50	104	98	116	156	98	621
Tsurumi	Dec.'03	-	14	21	15	4	-	-	53
Hadano	Apr.'04	-	-	160	145	-	-	-	304
Sagamihara	Apr.'04	-	-	20	36	16	52	21	145
Ome &Funabashi	Jun.'04	-	-	19	271	88	220	187	785
Seto-North	Feb.'05	-	-	445	5866	-	-	-	6312
Seto-South	Feb.'05	-	-	547	6183	-	-	-	6730
Centrair	Jul.'06	-	-	-	-	3075	4387	2759	10221
Kansai Airport	Mar.'07	-	-	-	-	2	62	54	117
Osaka	Aug.'07	-	-	-	-	-	214	141	355
lchihara *	Dec.'06	-	-			70	159	68	297
Total**		299	3294	5019	15419	5607	8076	4942	42658

^{*} JHFC Co-Operative Hydrogen Station


^{**} Total amount may slightly differ from the sum in the table above due to a significant figure rounding. Additional 20.5 kg of hydrogen supplied for metal hydride canister storages.

Refueling – All JHFC Stations (3)

H₂ Refueling: 16,969 times* (Dec. 2002 – Dec. 2008)

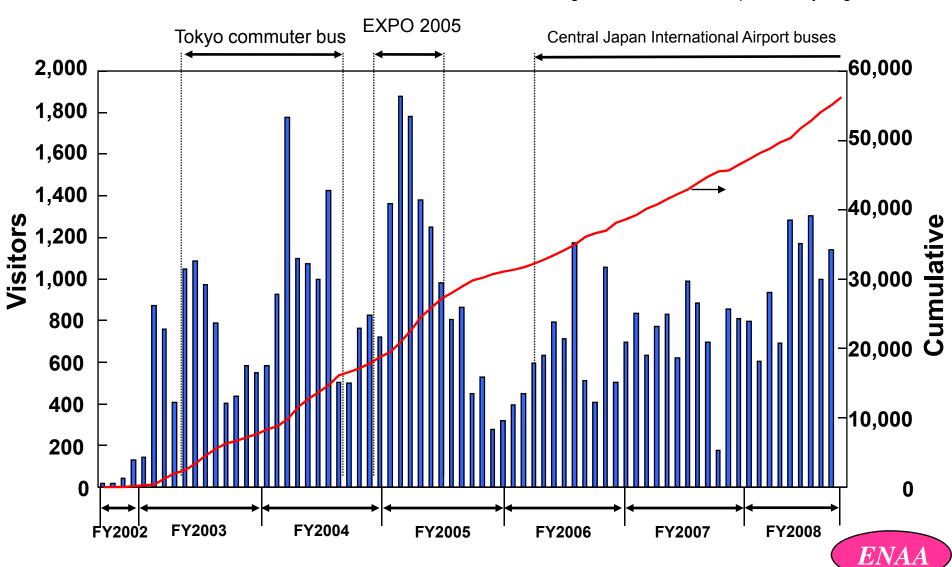
* Including Result of JHFC Co-Operative Hydrogen Station

(Appendix) Refueling – All JHFC Stations(4)

Hydrogen Refueling Times

						пу	arogen Re	eruering	rimes
Station	Opening	FY2002 (-Mar.'03)		FY2004 (Apr.'04-Mar.'05)	FY2005 (Apr.'05-Mar.'06)	FY2006 (Apr.'06-Mar.'07)	FY2007 (Apr.'07-Mar.'08)	FY2008 (AprDec.'08)	Total
Kasumigaseki	Dec.'02	136	379	466	462	486	640	403	1416
Daikoku	Mar.'03	48	316	466	388	275	316	206	2015
Asahi	Apr.'03	-	141	106	167	146	121	52	733
Senju	May.'03	-	246	298	313	263	210	131	1461
Ariake	May.'03	-	569	557	549	435	559	289	2958
Kawasaki	Aug.'03	-	60	66	72	74	114	70	456
Tsurumi	Dec.'03	-	15	16	12	3	-	-	46
Hadano	Apr.'04	-	-	107	106	-	-	-	213
Sagamihara	Apr.'04	-	-	17	32	17	41	19	126
Ome &Funabashi	Jun.'04	-	-	11	158	75	152	108	504
Seto-North	Feb.'05	-	-	88	1136	-	-	-	1224
Seto-South	Feb.'05	-	-	105	1244	-	-	-	1349
Centrair	Jul.'06	-	-	-	-	727	1020	657	2404
Kansai Airport	Mar.'07	-	-	-	-	1	40	36	77
Osaka	Aug.'07	-	-	-	-	-	114	116	230
Ichihara *	Dec.'06	-	-	-	-	48	101	52	201
Total		184	1726	2303	4639	2550	3428	2139	16969

^{*} JHFC Co-Operative Hydrogen Station Additional 183 times for metal hydride canister storages.



Visitors to Hydrogen Stations (1)

56,267 Visitors* (Dec. 2002 – Dec. 2008)

* Including Result of JHFC Co-Operative Hydrogen Station

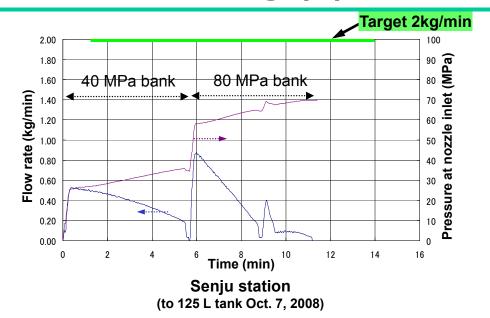
(Append

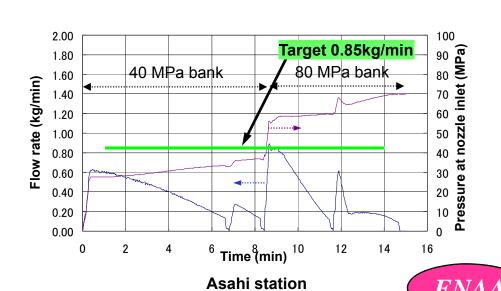
Visitors to Hydrogen Stations (2)

Station	Opening	FY2002 (-Mar.'03)		FY2004 (Apr.'04-Mar.'05)	FY2005 (Apr.'05-Mar.'06)	FY2006 (Apr.'06-Mar.'07)	FY2007 (Apr.'07-Mar.'08)	FY2008 (AprDec.'08)	Total
Kasumigaseki	Dec.'02	45	73	91	8	33	42	14	306
Daikoku	Mar.'03	36	1681	1977	1902	1892	2266	2485	12239
Asahi	Apr.'03	-	344	359	159	122	201	16	1201
Senju	May.'03	-	2026	4540	3294	2462	2184	2605	17111
Ariake	May.'03	-	3254	2578	2448	1058	454	394	10186
Kawasaki	Aug.'03	-	220	386	151	145	172	176	1250
Tsurumi	Dec.'03	-	32	82	39	13	-	-	166
Hadano	Apr.'04	-	-	499	230	-	-	-	729
Sagamihara	Apr.'04	-	-	198	81	30	56	57	422
Ome &Funabashi	Jun.'04	-	-	315	725	21	182	1169	2412
Seto (North & South)	Feb.'05	-	-	0	3236	-	-	-	3236
Centrair	Jul.'06	-	-	-	-	1478	1356	714	3548
Kansai Airport	Mar.'07	-	-	-	-	-	421	148	569
Osaka	Aug.'07	-	-	-	-	-	438	315	753
Ichihara *	Dec.'06	-	-	-	_	293	1024	822	2139
Total		81	7630	11025	12273	7547	8796	8915	56267

^{*} JHFC Co-Operative Hydrogen Station

70 MPa Refueling (1)

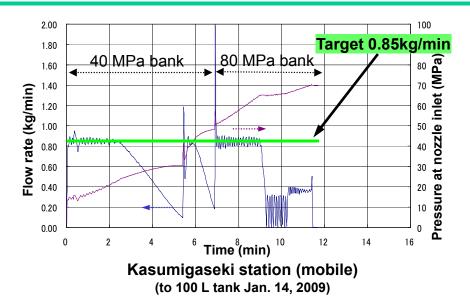

Results

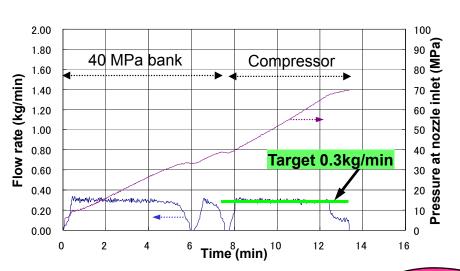

- Senju station:
 Flow rates both from 40 MPa and 80 MPa banks did not reach targeted 2 kg/min.
- Asahi station:
 Flow rate from 40 MPa bank did
 not reach targeted 0.85 kg/min
 while flow rate from 80 MPa bank
 reached 0.85 kg/min.

Causes of low flow rates:

Lower strength of SUS316L compared to SUS316 made inner diameter too small though SUS316L is favorable from the stand point of hydrogen embrittlement.

Modification of existing station tended to result in high pressure loss by longer piping between high-pressure banks, dispenser and pre-cooler.


(to 160 L tank Jan. 21, 2009)



70 MPa Refueling (2)

Flow rates in Daikoku station and mobile station, reached targets, 0.85 kg/min and 0.3 kg/min, respectively.

Temperature of hydrogen supplied by mobile station slightly exceeded target and needs improvement.

Daikoku station (to 125 L tank Dec. 9, 2008)

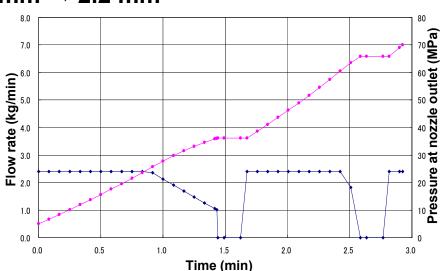
(Appendix) How to increase 70 MPa refueling flow rates

(1) Decrease pressure loss

Material SUS316L → SUS316(higher strength widens inner diameter)

Piping Inner diameter 2.5 or 3.1 mm \rightarrow 6.4 mm

Pre-cooler Inner diameter 3.1 mm → 4.8 mm


Refueling Nozzle Inner diameter 1.6 mm \rightarrow 2.2 mm

(2) Increase refueling potential

Pressure of banks 40 MPa \rightarrow 41 MPa 80 MPa \rightarrow 82 MPa

Volume of high pressure(82 MPa) bank

400 L → 800 L

Flow rate simulation after all improvement (6kg H₂ for 3 minutes to 160 L tank, period similar to gas refueling)

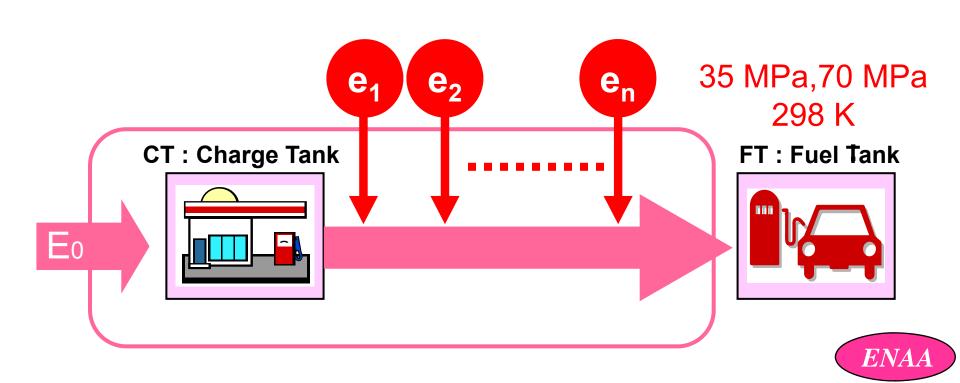
Staged improvement

(1)Feb., 2009: 6.4 mm piping between banks and dispenser

slightly higher bank pressure

(2)May-June, 2009: re-designed pre-cooler and refueling nozzle

(3)Dec., 2009: increase volume of high pressure bank



Definition of Efficiency

Energy of Product (H₂ Fed to FT)

Energy of Input $(E_0 + \sum e_n)$

Definition of Energy

```
Electricity: 3.6 MJ/kWh
```

(Efficiency of power generation is not taken into account)

Energy of Gas: Heating Value + Energy of Pressure

Energy of Pressure (Epf)

$$\mathsf{E}_{\mathsf{pf}} = \mathsf{R} * \mathsf{tf} * \mathsf{In}(\mathsf{pf}/\mathsf{p0})$$

Where,

R Gas Constant (8.31510 Jmol⁻¹K⁻¹)

t_f Temperature of Gas (K)

p₀ Atmospheric Pressure (101.325 kPa)

p_f Pressure of Gas (kPa)

(Appendix) Energy of Product Hydrogen

Conditions

	Calculated Energy of H ₂		
	LHV	HHV	
70 MPa gauge	128 MJ/kg	150 MJ/kg	
(298 K)	11.5 MJ/m³(nor)	13.5 MJ/m³(nor)	
35 MPa gauge	127 MJ/kg	149 MJ/kg	
(298 K)	11.4 MJ/m³(nor)	13.4 MJ/m³(nor)	
0 MPa gauge	120 MJ/kg	142 MJ/kg	
(298 K)	10.8 MJ/m³(nor)	12.8 MJ/m³(nor)	

On-site Reforming

Station	Feedstock	Efficiency % LHV (HHV)
Daikoku	Desulfurized Gasoline	58.7 (64.1)
Asahi	Naphtha	60.4 (66.2)
Kawasaki	Methanol	65.0 (68.8)
Hadano	Kerosene	54.6 (61.1)
Soniu	LPG	58.7 (63.8)
Senju	Natural Gas	60.7 (65.2)
Seto-South	Natural Gas	62.5 (66.7)
Centrair	Natural Gas	62.0 (65.6)
Osaka	Natural Gas	60.4 (64.7)

Efficiency from the feedstock to the fuel tank on the vehicle.

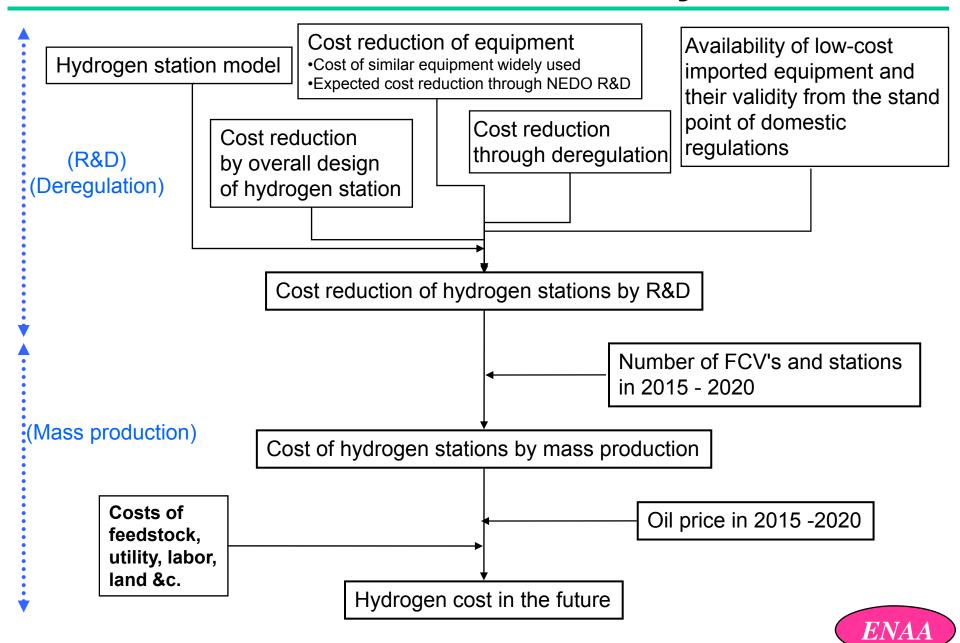
Electricity is regarded as 3.6 MJ/kWh. (No power generation efficiency is taken into account.)

Energy of gaseous material: heating value + energy of pressure

ENAA

Off-site

Station	System	Efficiency % LHV(HHV)
Tsurumi	High pressure H ₂ storage	98.3 (98.6)
Seto-North	High pressure H ₂ storage	89.8 (91.2)
Kasumigaseki (New Unit)	High pressure H ₂ storage	95.8 (96.4)
Kasumigaseki (New Unit)	High pressure H ₂ storage	94.1 (94.9)
Kansai Airport	High pressure H ₂ storage	99.8 (99.8)


Efficiency from the feedstock to the fuel tank on the vehicle.

Electricity is regarded as 3.6 MJ/kWh. (No power generation efficiency is taken into account.)

Energy of gaseous material: heating value + energy of pressure

(Appendix)

Cost Reduction Survey in FY2008

ISO/TC197/WG12 approved TS (Technical Specification) of hydrogen for FCV's. Further work is under way to issue IS (International Standard).

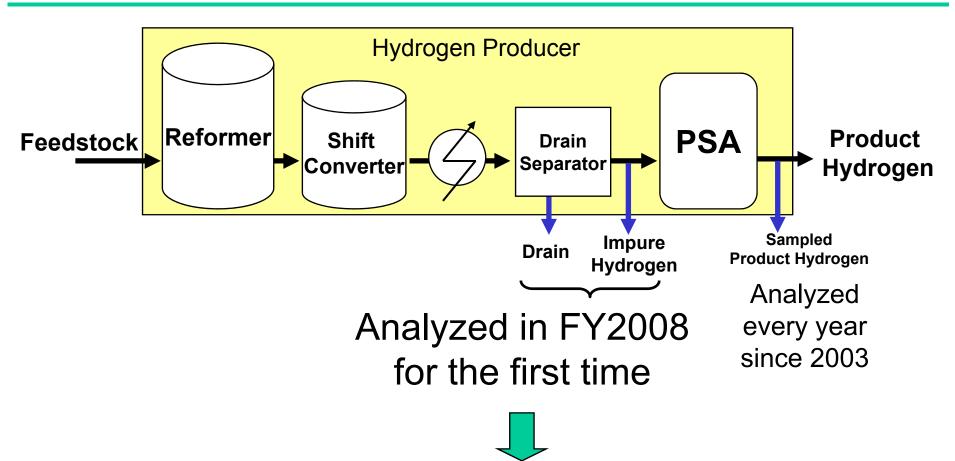
		ISO/TC197 TS	JHFC
	H_2	99.97 %	99.99%
	CO	0.2 ppm	1 ppm
	CO_2	2 ppm	1 ppm
	O_2	5 ppm	2 ppm
	N_2	100 ppm	50 ppm
	Ar	100 ppm	
impurities	He	300 ppm	
urit	Hydrocarbon	2 ppm	1 ppm
ies	H ₂ O	5 ppm	
	Sulfur compounds	0.004 ppm	
	HCHO	0.01 ppm	
	НСООН	0.2 ppm	
	NH_3	0.1 ppm	
	Total halogen	0.05 ppm	

Note) --- indicates unspecified when JHFC Project started.

Reference: ISO/TC197/SC/WG12, ISO/PDTS 14687-2 (2006. 8.30)

(Appendix)

Précise Gas Analysis (Dec. 2008)


Impurity		Concentration in volume ppm]
		Ichihara	Daikoku	Kawasaki	Senju	Centrair	Osaka	Sagamihara	MDC	Analysis Method
		kerosene	De-S gasoline	methanol	natural gas	natural gas	natural gas	water electrolysis		
CO		0.06	<0.01	<0.01	0.01	0.05	0.16	_	0.01	GC-FID
CO2		<0.01	<0.01	<0.01	<0.01	0.02	0.35	_	0.01	GC-MS
Methane		<0.05	<0.05	<0.05	<0.05	<0.05	0.19	_	0.05	GC-FID
Other Hydrocarbon 1)		0.13	<0.05	<0.05	<0.05	<0.05	0.40	_	0.05	GC-FID
Benzene		<0.005	<0.005	<0.005	<0.005	<0.005	0.006	_	0.005	GC-MS
Sulfur ²⁾		<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	_	0.0001	IC
Methanol		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	_	0.01	GC-MS
Formaldehyde		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	_	0.01	DNPH/HPLC
Acetoaldehyde		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	_	0.01	DNPH/HPLC
Formic Acid		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	_	0.01	IC
Acetone		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	0.01	DNPH/HPLC
Ammonia		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	_	0.001	IC
Water		<0.5	3.4	<0.5	<0.5	<0.5	0.74	_	0.5	Dew-point Meter
Oxygen		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	_	0.01	Trace Oxygen Meter
Argon		<0.03	1.13	<0.03	1.34	0.39	0.54	_	0.03	GC-MS
Nitrogen		0.04	24.6 ⁴⁾	0.32	6.91	10.9	2.05	26.9 ⁴⁾	0.03	GC-MS
Helium		<3	<3	<3	<3	<3	<3	_	3	GC-TCD
Halogen compounds ⁵⁾	: F	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	_	0.05	IC
	: CI¯	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	0.05	IC
	: Br¯	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	_	0.05	IC

- 1) All Hydrocarbon concentrations are expressed as methane-equivalent.
- 2) All sulfur compounds are expressed as SO_4^{2-} equivalent.
- 3) Each Halogen compound is expressed as F-, Cl-, Br-.
- 4) Minimum Detectable Concentration

Gas Analysis

Impurities such as CH₃OH, CH₃COCH₃, NH₄⁺, HCOOH, and aldehydes were detected.

Their concentrations were low and were easily removed by PSA. Investigation will be continued.

Please visit our web site! http://www.jhfc.jp Contents are growing day by day.