

# Development of Fuel Cell System For Telecommunication Backup Power

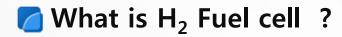
**HYUNDAI HYSCO** 

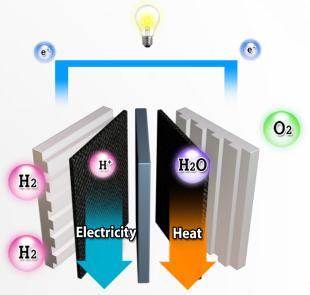
Jeon Yoo Taek

2015.05.29



# INDEX





# Development of Fuel Cell System For Telecommunication Backup Power

- 1. Introduction
- 2. Market analysis
- 3. Energy issues in Korea
- 4. Development concept
- 5. Air-cooled stack
- 6. FC System technics for Backup Power
- 7. Future works
- 8. Conclusions

# Introduction







<Anode Reaction>

$$2H_2 \rightarrow 4H^+ + 4e^-$$

<Cathode Reaction>

$$4H^+ + O_2 + 4e^- \rightarrow 2H_2O + Heat$$



# Background

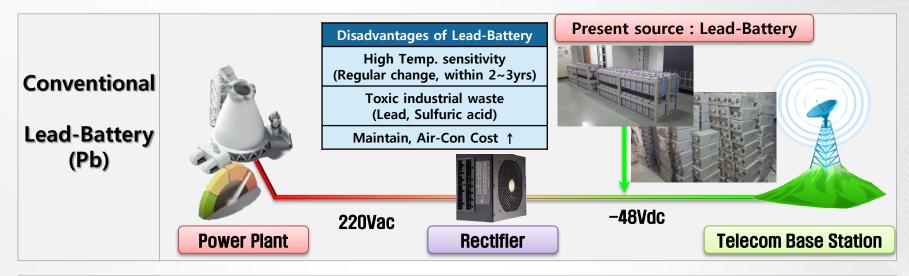


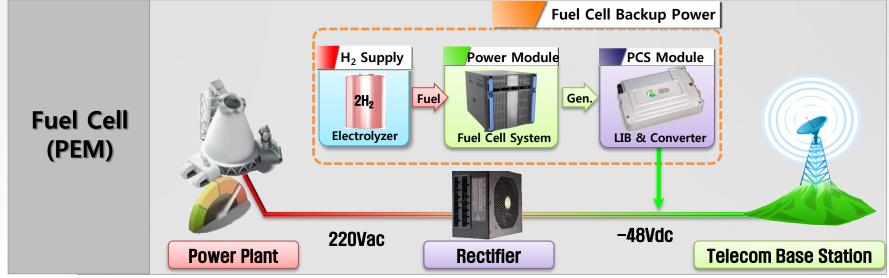
# What is Fuel cell for backup power?

- Restriction of Hazardous substances (RoHS): July, 2006
  - -. Lead, Cadmium, Mercury, etc, using these hazardous materials in some specific industries is strictly prohibited
  - -. Reinforced RoHS2 (June, 2011)
  - -. Manufacturers' mandatory compliance with RoHS1, 2

### Demand of renewable energy source

- -. Mandatory installation of backup power: hospital, manufacturing line, etc.
- -. Recommendation of renewable energy in backup power: CO<sub>2</sub> reduction


### Develop technology for low-maintenance cost


- -. Conventional backup power has low-durability and high maintenance cost
  - → Replacement period : Every 2~3yrs (Lead-battery)
  - → Air conditioning to maintain system operation of Pb battery
    - : using a lot of electricity  $\Rightarrow$  Maintenance cost  $\uparrow$

# **Business** model



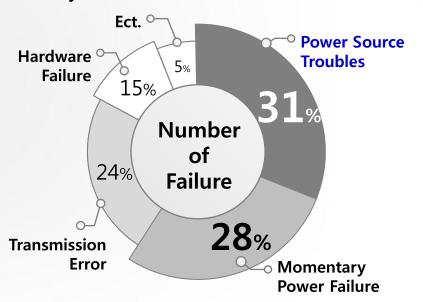
# Concept of PEM Fuel Cell for Telecommunication Backup power

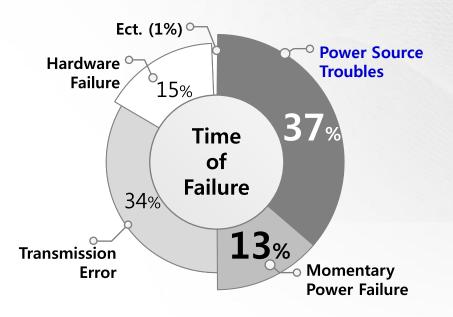




# Failure analysis of Telecom base station




# Damage during Blackout


(Assumption) 1 Telecom. base station/day: Calls 1,350 Erl / Data 12GB

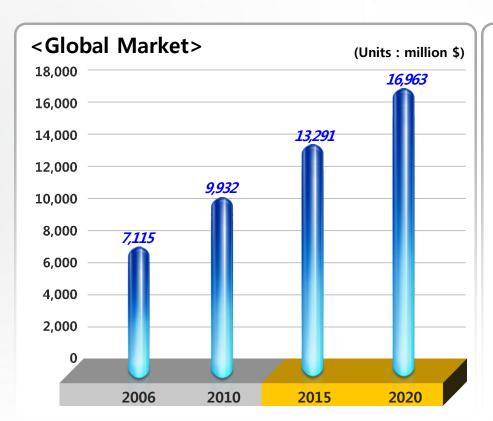
```
\times 1 Erl = number of calls \times average holding time(hr),
 \times 1 Erl = Status of call line for 1 hr without interrupt (Erl : 3,600sec, 1Erl = 36HCS)
```

Damage of service interruption under unstable electricity (1 site/day)
 about \$ 2,200 per day

Analysis of Service failure






| Number of stations | Number of failure | Average shutdown time |  |
|--------------------|-------------------|-----------------------|--|
| 1,996 places       | 168 times/month   | 2 hrs                 |  |

# Market Analysis (UPS)



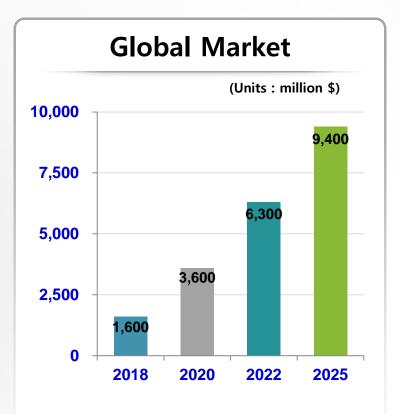

# UPS (Uninterruptable Power Supply) Market (Global)

- Forming the largest market around the United States and Europe
- Expectation of rapid market expansion in Asia, especially China and India
- Estimated Backup power market : about \$ 17 billion in 2020

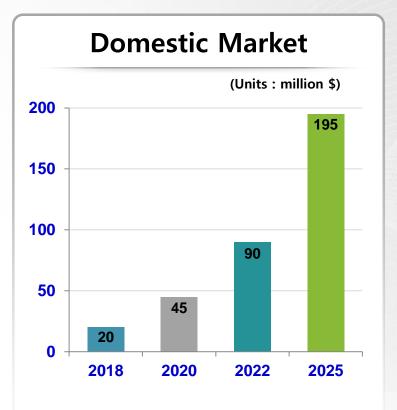







**X** Ref. : Ministry of Science, ICT and Future Planning (KOR)

**X** Assumption : Base station 50K sites, 1% grow up every year


# Market Analysis (Fuel cell)



# Estimated market of Backup power using Fuel cell



- In 2018, Market share increase up to 10%
- In 2025, about 40% replaced by Fuel Cell
- Market growth \$ 1.6 billion → \$ 9.4 billion



- In 2025, about 20% market share
- Market growth up to about \$ 0.2 billion

# Strategic Road-map for FC in Korea



| Category      | Strategic<br>Item                                     | ~2011                                                                                                                                                                                                                                  | ~2012                          | ~2013                                         | ~2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ~2020                   | ~2030            |
|---------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------|
|               | Fuel Cell<br>Core<br>Technology                       |                                                                                                                                                                                                                                        | igh efficiency/durabilit       | y core components for<br>C components (anode, | ransportation, porto<br>PEMFC, DMFC (catalyst<br>cathode, matrix, electro<br>materials technolo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t, electrolyte, GDL, Mi |                  |
|               | Diversification<br>of Fuel<br>Technology              |                                                                                                                                                                                                                                        | Development of  Development ar | multi-fuel reformer/                          | ncy(LHV) > 75%, Concy(LHV) > 75%, Concy(LHV) > 75%, Concy of the concy | yst technology          |                  |
| Short<br>Term | SOFC<br>System in<br>Green Home                       |                                                                                                                                                                                                                                        | High-efficio                   | ency module packa                             | f stack > 50%, Open<br>aging design and o<br>idation resistance and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | peration technolo       |                  |
|               | High Efficiency<br>and Power Stack<br>Module for FCEV | Stack power : 90kW, System power density > 650W/L, Efficiency > 60%, durability > 5,000 hours      Variable pressure stack and operation / diagnosis technology  System design/development/evaluation and construction of supply chain |                                |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | s                |
|               | Fuel Cell<br>System<br>for Ship                       |                                                                                                                                                                                                                                        | trol stacks in marine          | • Power output >                              | 10MW, Stack efficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | ropulsion power  |
| Long<br>Term  | Fuel Cell<br>System for<br>Large Power-<br>Generation |                                                                                                                                                                                                                                        | • Capacity > MW,               |                                               | 48%, CO <sub>2</sub> recovery 6  Development of MW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         | GT hybrid system |
|               | IGFC                                                  |                                                                                                                                                                                                                                        |                                | • Power ou                                    | itput > 600 MW, Efficie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | ctricity > 50%   |

# **Project: Backup power for Telecom.**









| Program                | New & Renewable Energy Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP)   |
|------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Project Title          | Development and demonstration of 3kW class fuel cell system having a grid-powered electrolyzer for backup power applications |
| Funding &<br>Financing | ₩ 9 billion KRW / \$ 8.24 million USD from the Ministry of Trade, Industry & Energy, Republic of Korea                       |
| Period                 | 2014. 6. 1 ~ 2017. 5. 31 (36 months)                                                                                         |
| Organization           | Hyundai HYSCO, Doosan Fuel cell, CS Enertech, JIT-System, KIER, KIST, KIMS, Ulsan univ.                                      |

### Objectives

- Achievement of competitiveness of Fuel Cell in comparison with lead-battery
  - : Price reduction, Low-maintenance cost, High performance
- Expansion of fuel cell system solutions from Telecommunication base station to ICT, hospital, etc.

### Core Values

### Fuel Cell Module

- Low-cost Air Cooled stack
- Rapid power failure response
- Sufficient operation time (8hrs)

### H2 Storage/Supply

- High efficiency electrodes and electrolysis stack
- Good performance and durability

### **Battery/Converter**

- High efficiency power converting module
- Integration of battery and converter

### **System Demonstration**

- System integration and Optimization
- Expandable system module
- Reliability/Durability/Safety

# **Product**



# Application for Telecommunication Backup power

### <2kW Class Fuel Cell System>



- Uninterruptible Operation, High Stability
- Environment-Friendly: Pb free
- Saving of Battery Space





- Water Cooled Stack & Metal Bipolar plate
  - High Efficiency: Higher than Air Cooled Stack(50% ↑)
  - Fast Start-Up & Response, High Reliability



### Modulation

- Easy to Scale-Up by Parallel Installation
- Modulation : Handy Shipping/Installation & Maintenance
- 19" Rack: Convenient /Easy connection with Other Equip.



# Specification





<2kW FC Module for Backup Power>

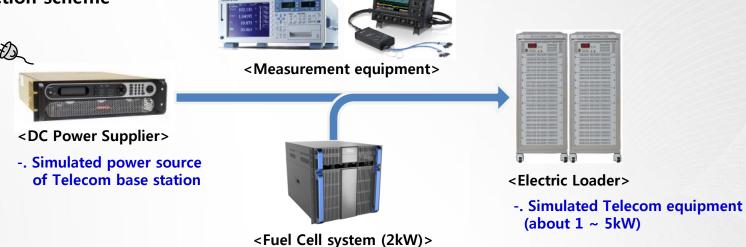


<Open View (FRT)>



<Outer CASE (FRT)>

| Fuel Cell System for Backup Power |                      |                                                           |  |  |
|-----------------------------------|----------------------|-----------------------------------------------------------|--|--|
| Feature                           | Value                | Remarks                                                   |  |  |
| Power Output                      | 2 kW                 | Parallel connection Available.<br>After DC/DC converting. |  |  |
| Voltage Output                    | 48 V DC              | -                                                         |  |  |
| Size                              | W440 x D645 xH400 mm | -                                                         |  |  |
| Volume                            | 113 L                | -                                                         |  |  |
| Weight                            | 78 kg                | -                                                         |  |  |
| Hydrogen Purity                   | Min. 99.9%           | -                                                         |  |  |
| Input Pressure                    | 50 kPa (0.5 Bar)     | -                                                         |  |  |
| Consumption                       | 0.789 Nm³/kWh        | -                                                         |  |  |
| Response Time                     | 2 ms ↓               | @ Grid off (Blackout)                                     |  |  |
| Durability                        | 500 cycles ↑         | On/Off                                                    |  |  |
| Initial Power Source              | Li-ion Battery       | -                                                         |  |  |


### **Integrated System with Outdoor Rack**

| Feature       | Value                          | Remarks                                  |  |
|---------------|--------------------------------|------------------------------------------|--|
| Power Output  | 4kW<br>(2 FC modules combined) | Additional parallel connection available |  |
| Voltage Input | 220V AC, 50~60 Hz              | For environment controller               |  |
| Size          | W1350 x D110 x H1970 mm        |                                          |  |
| Space         | 38 U                           | <del>-</del>                             |  |
| Weight        | 180 kg                         |                                          |  |
| Ambient Temp. | -20°C ~ 45°C                   | -                                        |  |
| Humidity      | 5% ~ 90%                       |                                          |  |
| Communication | RS485, TCP/IP                  | -                                        |  |



# Schematic diagram

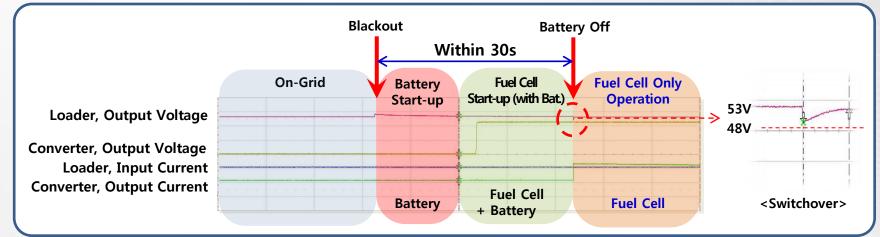
Connection scheme



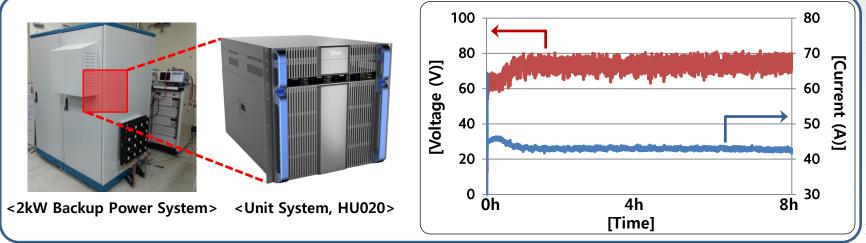







<2 Systems parallel test, with Cabinet>

# Results

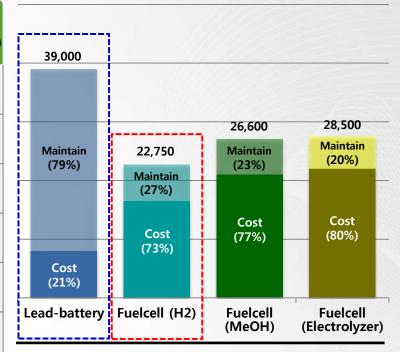



### Performance results

Start-up Test



### Operation Test




# **Economic Analysis**



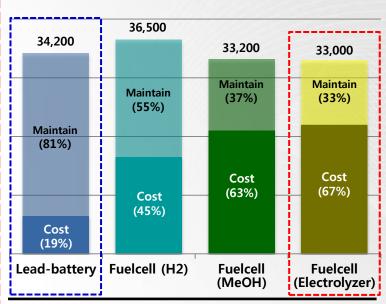
# Cost analysis at stable grid

Units: USD (\$) Lead(Pb) **FuelCell FuelCell FuelCell** Content **Battery** (H2) (MeOH) (Electroly.) Equipment cost 1) 8,000 16,500 21,000 22,000 16,000 **Battery Change** 0 0 0 Electricity cost 15,000 5,000 5,000 5,500 (air cond. Heat ...) Maintain fuel Cost 0 250 100 0 (10 yrs) 1,000 fuel Delivery 0 1,000 0 Sub-total (10yrs) 31,000 6,250 6,100 5,500 **TOTAL** 39,000 22,750 27,100 27,500



### (Assumptions)

- -. Telecommunication electric load: 2kW
- -. Operation time : 8 hrs/year, continuous operation (10 years)
- -. Fuel refill (H<sub>2</sub>, MeOH: 1 time/year, Electrolyzer: none)
- -. Electrolyzer efficiency : 4.5kWh/Nm³
- -. Electricity fee : Air condition is 3 times larger than normal heating system
- -. Fuel delivery distance : radius 30km (\$50 / 30km)


<sup>1)</sup> Cost of Fuel Cell system : based on 10,000 units capa. per year

# **Economic Analysis**



# Cost Analysis at Unstable Grid

Units: USD (\$) Lead(Pb) **FuelCell FuelCell FuelCell Content Battery** (H2)(MeOH) (Electroly.) 16,500 21,000 22,000 **Equipment cost** 6,400 **Battery Change** 12,800 0 0 0 Electricity cost 15,000 5,000 5,000 11,000 (air cond. Heat ...) Maintain fuel Cost 0 3,000 1,200 0 (10 yrs)fuel Delivery 12,000 6,000 0 0 27,800 12,200 11,000 Sub-total (10yrs) 20,000 **TOTAL** 33,000 34,200 36,500 33,200



(Assumptions)

- -. Telecommunication electric load : 2kW
- -. Operation time: 8 hrs/month, continuous operation (10 years)
- -. Fuel refill (H<sub>2</sub>, : 12 times, MeOH : 4 times Electrolyzer : none)
- -. Electrolyzer efficiency : 4.5kWh/Nm³
- -. Electricity fee : Air condition is 3 times larger than normal heating system
- -. Fuel delivery distance : radius 30km (\$50 / 30km)
- -. Lead-battery cost : local price was reflected

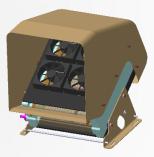
<sup>1)</sup> Cost of Fuel Cell system : based on 10,000 units capa. per year

# **Development concept**



# Cost, Reliability, Efficiency & Safety




Reduction of BOPs (60% ↑)
Easy Assembly

Electrolyzer (AAEM)

H₂ generation Maintenance fee ↓ Battery / PCS Modulation

High efficient Conversion Non-interruption time Outdoor Cabinet

Reliability, safety Operation condition

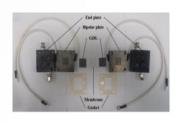


<3kW Air-cooled stack>



<Electrolyzer>




<BMS & Convertor Module>



<Outdoor cabinet #1>



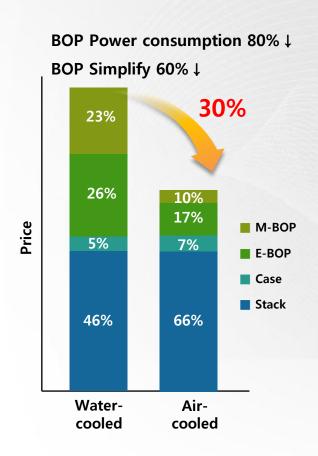
<300W Air-cooled stack>



<AAEM Single stack>



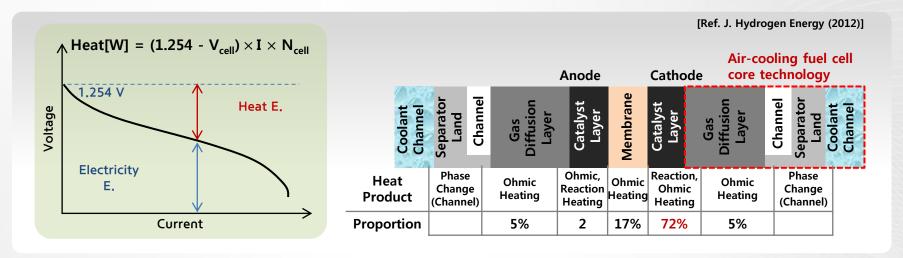
<Li-ion Battery>



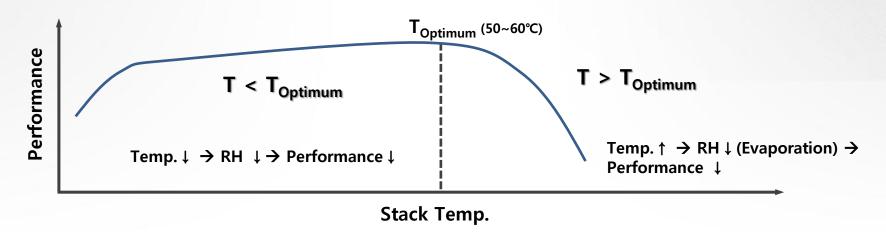

<Outdoor cabinet #2>

# **Comparisons** (Air cooled vs. Water cooled)




| Water-cooled System                                             |         | Items        | Air-cooled System                                                      |                                                                                                                |
|-----------------------------------------------------------------|---------|--------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Stack  E - BOP  Air- supply module  Stack cooling module        |         | Structure    | Stack E - BOP Air supply part                                          |                                                                                                                |
|                                                                 | h perfo | ormance<br>† | Merit                                                                  | <ul> <li>✓ Number of parts ↓ → Price ↓</li> <li>✓ Simplified cooling and heating dissipation design</li> </ul> |
| <ul><li>✓ Design complexity ↑</li><li>✓ System size ↑</li></ul> |         | De-<br>merit | <ul><li>✓ Durability ↓</li><li>✓ Susceptible to outside temp</li></ul> |                                                                                                                |




# Thermal management



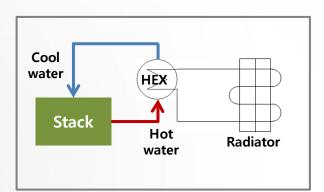
Heat generation

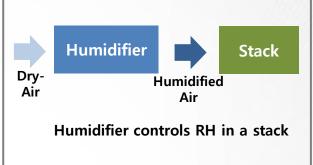


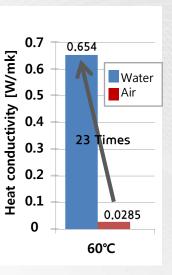
Stack performance with temperature



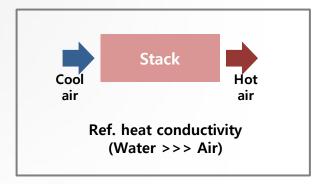
# Stack cooling& Humidification

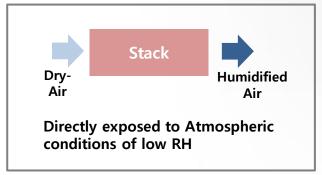




## Water-cooled stack vs. Air-cooled stack


# Cooling

### Humidification

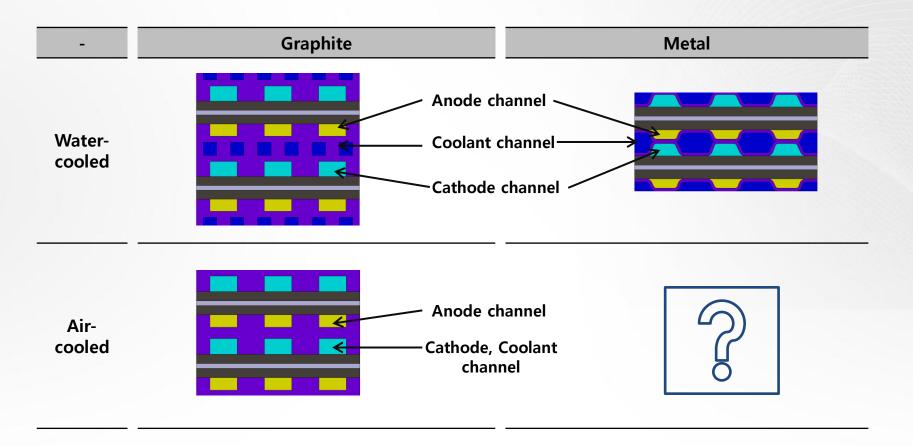

Watercooled








Aircooled



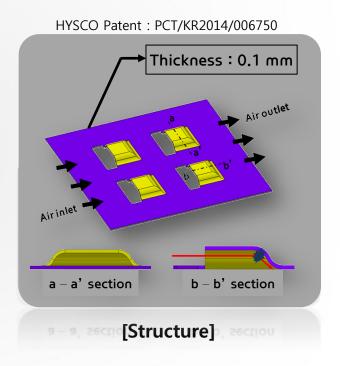


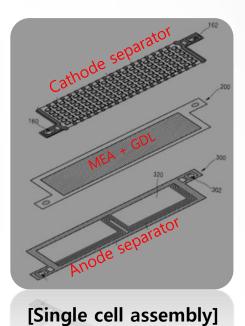

# Bipolar plate

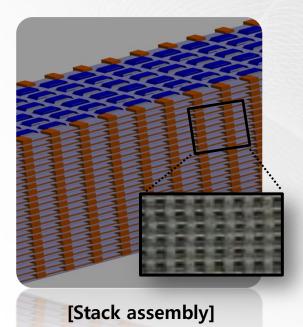


- Graphite vs. Metal
  - Water-cooled stack : Separated cooling channel
  - Air-cooled stack : Cathode channel has two functions (Cooling & Air supply)




# **Design concepts**





### **Louver structure**

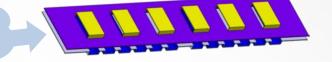


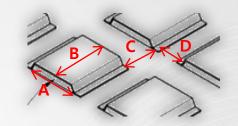
- ✓ Self-humidifying & good cooling performance
- ✓ Graphite separator can not be produced








# Design optimization




• Temp. : 26°C

• Humidity : 10% RH

• Air Stoi. : 30





| Distribution | Results                          |  |  |  |
|--------------|----------------------------------|--|--|--|
| Water        | Air in Average RH 47.5%          |  |  |  |
| Temp.        | Air in  Average temp. 50°C       |  |  |  |
| Current      | Air in Reaction of near Louver ↑ |  |  |  |

# Mass production of bipolar plate



### 2011

Mass production (Capa. 1.2 million eas/yr)



### 2012

Automated inspection facility (Capa. 500,000 eas/yr)



### 2013

Mass production of Fuel Cell Car (HMC)



### 2015 Target

Development of fully automated mass production line

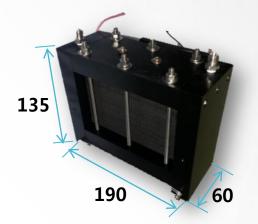
(Capa. 2,500,000 eas/yr)

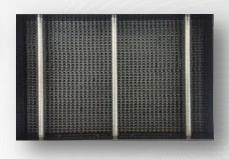


# Results

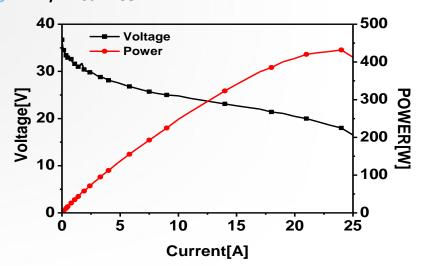


### Performance test

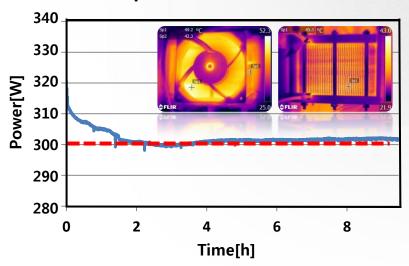

### Specification


**Stack Volume** 1.5L (190×60×135)

Max Power 430 W (18V, 24A)


Stack Voltage 20 V

Stack Current 15 A

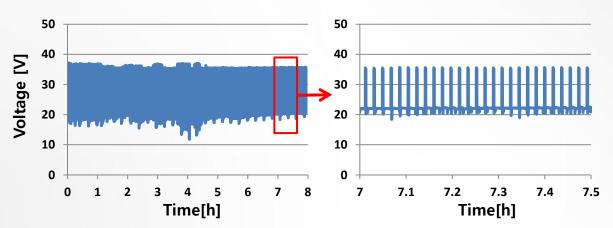




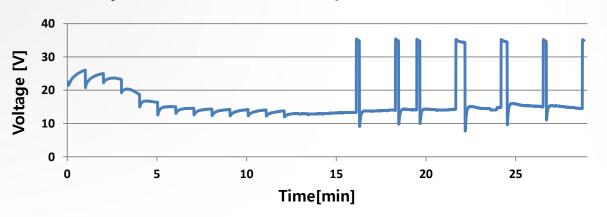

### I-V, P curves



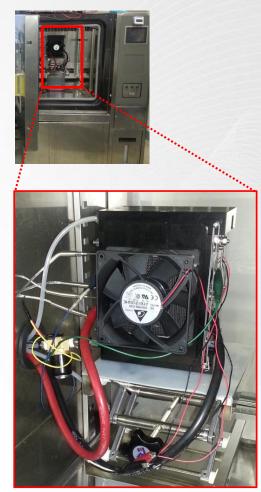
### 10 hours Operation




# Results



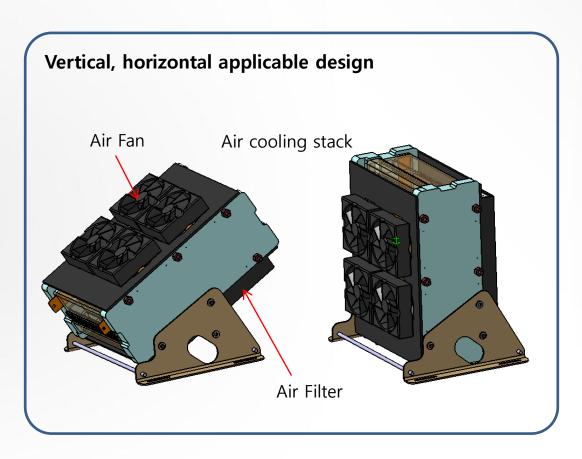

# Cycle test

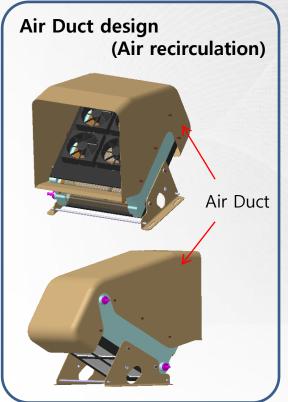

On/off 400 cycles test @ 50°C air temp.



On/off cycle test @ -10℃ air temp.




### [Environmental chamber]



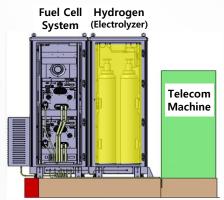

# Stack module design(3 kW)



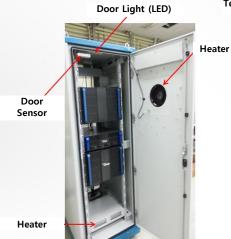
- Scale up from 300 W to 3 kW
  - Scale up Know-How from 300W stack

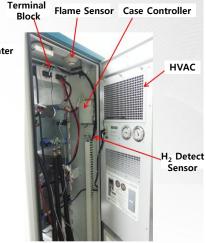





# **Outdoor Cabinet**




# Optimization of operating condition and safety


### Concept of product and installation

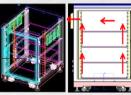




<2kW System with cabinet> × parallel available (4kW)






Environment control

### Structural design

- Prevent inflow of dust and moisture
- Insulation, anti-corrosion

### Functions

- HVAC (- 20~ 45°C)
- HEX, controller for inner environment
- In/External communication
- **X HVAC: Heating, Ventilating and Air conditioning**





### Product safety

### **Functions**

- Gas leak, flame sensors
- Door open alarm
- Inner condition monitoring



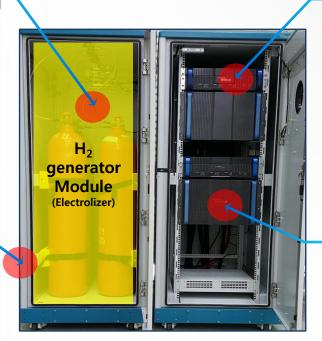






<Inner Functional sensors>

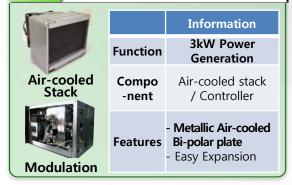
# **Development concept**




# Configurations

# Electrolyzer Module (AAEM) Information Function H₂ Prod./Storage AAEM Stack Water/Power supply H2 Storage - Anion Exchange Features - Purity: 99.9% ↑ - 300W

### Outdoor Cabinet (IP55)






<Backup Power Fuel Cell>

# LI-Battery / PCS Module Information Function Uninterrupted Compo Li-ion Battery AC Detector, BMS - Modulation - Parallel connection - Detecting Blackout Combined Module

### Air-Cooled Fuel Cell Module



# **Future Works**



# **Expansion to new applications**

### **Mobile Communication Base Station**







<Mobile Communication Base Station >



### Hospital, Factory and Buildings

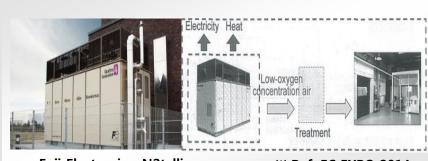






<Manufacturing line>










<Server and Data Center, IDC>

### Fire Prevention Facilities



<Fuji Electronics, N2telligence>

**\* Ref. FC EXPO 2014** 



# Thank you for Listening

